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SUMMARY

A theoretical development of the FLEXSTAB system is presented. The development
integrates the theor~tical mechanics of a flexible body with a low frequency unsteady aero-
dynamic theory emptoying linear influence coefficients based on finite element approxima-
tions. The theoretical mechanics resolve the dynamics flexible aircraft into structural
dynamics of free vibration modes superimposed on ri dy dynamics. This resolution is
made using a2 mean reference frame for structural mci > and leads to two important features
of the FLEXSTAB system: one, a logical merger of quasi-steady and dynamic aeroelasticity
through the residual flexibility approximation; and, two, a logical basis for incorporating into
the analysis empirical, rigid aircraft aerodynamic data. The aerodynamic theory is ap;icable
to subsonic and supersonic flow and multiple wing-body-tail-nacelle configurations. Aero-
dynamic influence coefficients are derived using a paneling scheme which lends itself to empir-
ical corrections. Finally, the theoretical aero- and structural dynamics are integrated, conserv-
ing energy of the system and thereby vielding equations of motion appropriate to stability
evaluation. These equations are expressed for a steady, reference motion to determine trim
and static stability. They are also expressed in terms of unsteady perturbations about the
reference motion to determine dynamic stability by characteristic roots or by time histories
following an initial perturbation or following penetration of a discrete zust flow field.
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1.0 INTRODUCTION

Since the early days of aviation, aircraft designers have contended with aeroelastic prob-
lems. Comovinations of aerodynamic and inertial loads on flexible aircraft structures have
«aused g.oblems including wing divergence, flutter, and loss of control. Because these aero-
elastic preblems have caused catastrophic failures, extensive analytical methods have been
developed to predict and to prevent their occurrence.

Aeroelasticity also influcnces stability ; however, until recently, the effects were so minor
that they could be evaluated satisfactorily by rigid-aircraft stability theory using simple modi-
fications to the stability derivatives. This approach. however, is not valid for the latest, and
largest, flexible aircraft designed to operate at high dynamic pressures. The latest transonic
and supersonic transports are prime examples. The static stzbility characteristics of these
aircraft are drastically affected by elastic structural deformation. Further, because some
of their structural motions have characteristic frequencies nearly as small as those of their rigid
body motions, dynamic stability is significantly affected by the dynamics of the structure
through unsteady aerodynamic coupling between the rigid body and the structural motions.
For these aircraft, a mathematical model based fundamentally on the dynamics of a flexibie
body is required to predict static and dynamic stability.

The low aspect ratio, thin wing, slender body configurations of large supersonic aircraft
pose the most difficuit problems. Severe aeroelastic effects on the stability of these aircraft
must be evaluated early in the preli.ninary design period. These aeroelastic effects arise from
complex structural deformation shapes in the presence of strong interference flows among the
wing, body, nacelles, and tail. Evaluation requires sophisticated structural, aerodynamic, and
dynamic analytical methods having a great deal of generalitv. These analytical methods consist
of large digital computer programs with massive data transfer between the programs. The flow
time required for the analysis is very large and reduces its effectiveness in the design cycle, if a
unified system of analyis is not available. Recognizing these facts, development of the FLEX-
STAB Computer Progran System was undertaken by The Boeing Company under contract
with the NASA-Ames Research Center. The objective was to provide a unified system of
computer programs havirg the required gencrality.

FLEXSTAB is a syst2m of digital computer programs based on linear theories for evaluat-
ing static stability, dynam c stability, trim stite, structural loading. and elastic deformation of
arbitrary aircraft configurations in subsonic and supersonic flight. The analysis includes struc-
tural dynamics in a controls-fixed dynamic anaiysis of longitudinal and lateral-directional
motions. The distinctive fe: tures of the FLEXSTAB system are as follows: (1) the system is
tased on integrated acrodyramic, structural, and dynamic analytical inethods valid for virtually
every practizal aircraft configuration having a plane of symmetry (2) the acrodynamic analysis
can readily incorporate empirical and theoretical corrections, and (3) the system includes the
lew-frequency aerodynamic effects appropriate for evaluating the stability of large aircraft.

The linear acrodynamic analytical method used in the system is essentially that intro-
duced by Woodward (ref. 1-1) for representing supersonic flow about wing-body combina-
tiors. However, the method has been extended to include subsonic flow, arbitrary wing-body-
nacelle-tail arrangements, and low-frequency unsteady acrodynamics. In addition, the



FLEXSTAR system is formulated to accept aerodynamic data for making corrections to its
linear analysis. The data may be in the form of experimental data from wind tunne! forcc and
pressure models, or data from nonlinear analytical methods. The capability for making
aerod ' nzmic corrections was deemed essential because nonlinear aerodynamic phenomena
nearly always have important cffects on the stability of practical aircraft configurations.

The FLEXSTAB system contains a structural finite element method based on beam
theory: it will also accept structural properties generated externally by structural programs

such as NASTRAN (ref. 1-2). The system has been used in conjunction with the Boeing-
SAMECS structural program (ref. 1-3).

The dyramic analysis uses the residual flexibility concept, wherein an arbitirarily selected
number of free-vibration structural mode shapes are used as dynamic degrees of freedom and
the remaiming free-vibration structural mode shapes are treated as quasi-static* degrees of
freedom. The latter do not appear explicitly in the dynamic problem, their eftect being
represented in terms of residu:al flexibility.

The formulation and programming of the system have been tested by predicting the
stability characteristics of typical subsonic and supersonic aircraft. The test aircratt were the
Boeing 707-320B, the Boeing B-27G7 SST, and the Lockheed YF-12A. Wind-tunnel and flight
test data were compared with numerical results to demonstrate the validity of the system.
Comparisons were made of the longitudinal and lateral-directional characteristics of the
Boeing 7G7-320B at mid-cruise (Mach number = 0.8), the longitudinal characteristics of the
BRoeing B-2707 SST at mid-cruise (Mach number = 2.7), and the longitudinal characteristics
of the Lockheed YF-12A at Mach numbers = 0.8 and 2.8.

This report, Volume 1 of four volumes, describes the engineering analysis on which the
FLEXSTAB computing program system is based. Volume II is a computer program user’s
manual. Volume [1I describes the FLEXSTAB computer program, and Volume IV contains
the results computed for the test cases.

It should be noted that the scope of the FLEXSTAB system described in this report is
curreintly being extended. The computer program coding is alsc being revised. Each version is
identified by a decimal number (X.Y), X indicating the technology (or analytical) level, and Y
the level of coding pertaining to a given X. The system described in this report is
LEVEL 1.02.00.

*A quasi-static degree of freedom is one for which damping and inertial forces are so sinall as
to be negligible.



2.0 COORDINATE SYSTEMS AND KINEMATIC DESCRIPTION

2.1 INTRODUCTION

The objectives of this section are twofold. The first is to introduce the coordinate
systems used in the formulation of the FLEXSTAB system. The second is to derive the basic
kinematic description used in the FLEXSTAB system analysis.

All coordinate systems used in the formulation are right-handed, rectangular Cartesian
and are listed in table 2.1-1. Five of the coordinate systems are termed fundamental axis
systems and are completely defined in section 2.2. In addition, local axis systems are
introduced in sections 3 and 4 and are used in the acrodynamic and structural derivations
contained in those sections. '

CTA BLE 2.1-1.—COORDINATE AXIS SYSTEMS

FUNDAMENTAL AXIS SYSTEMS

Inertial Axis System—X’, Y, Z'-inertial reference frame for structural and rigid body dynamics
Fluid Axis System—x, y, z —irertial reference frame for aerodynamics
Body Axis System—)_(s, YB‘ ZB——body-fixed reference frume for rigid body motions

Reference Axis System—X, Y, Z--body-fixed coordinate system for geometric, structural, and inertial
description )

Stability Axis System—Xs, Ys, Zs—body-ﬁxed reference frame for stubility parameters

LOCAL AXIS SYSTEMS

Axis systems Aerodynamic " Structural
Component Thin body-XN, YN' ZN Thin body—-xN; YN' ZN
Axis Systems Stender body—Xyy, Yy, Zy
Panel or Thin body panel—§y.. Tinie Sni Thin body elastic axis segment—
Segment Axis Systems XNie YN+ ZNi
Slender body centerline segment—
Eni i- Smai
Interference surface panel—
Enic i S

Two of the fundamental axis systems are inertial reference frames. One, termed the
Inertial Axis System, is earth fixed and is used as an inertial reference frame for the dynamics
of a flexible aircraft. The other, termed the Fluid Axis Systein, translates with a steady
velocity relative to the carth and is the inertial reference frame for aerodynamics. The three
remaining fundamental axis systems are mean reference frames; a concept discussed in de tail
in section 2.3 in general, they are in motion relative to the two inertial reference frames but
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are fixed relative to one another. One mean reference frame, termed the Body Axis System, is
used as a basis for expanding vector quantities associated with rigid-body m.otion. The second,
termed the Reference Axis System, is used as a coordinate system in the analytic description
of geometric, structural, and aerodynamic properties. The third, termed the Stability Axis
System, is used as a basis for describing the stability characteristics of an aircraft.

~ The motions of the three mean reference frames (i.e., the Body, Reference, and Stability

Axis Systems) are such that they may be treated as body fixed, even though the aircraft is
undetgomg elastic deformation, ir which case every material particle of the aircraft i isin 7
_motion relative to the mean referénce frames. The mean reference frames are given an initial
orientation relative to the aircraft when it has a specific deformed shape, e.g., the shape in the

-design flight condition. Then subsequent motions of the mean reference frames are deter-
mined by requiring the kinetic energy of the aircraft motion relative to them to be at a
minimum. This requirement yields six conditions determining the translational and rotational
velocities of the mean reference frames reiative to the Inertial Axis System. If the aircraft is
moving as a rigid body then the minimum kinetic energy is zero and the mean reference
frames are body fixed. Section 2.3 shows that even when the aircraft is undergoing elastic
deformation the mean reference frames liave the characteristics of a body-fixed axis system;
hence, the terms *“‘body-fixed axis system’’ and ‘‘mean reference frame” are used inter-
changeably in the following.

The introduction of body-fixed axis systems is a necessity for the FLEXSTAB system
analysis. Elastic deformation of an aircraft is described in the FLEXSTAB system by equa-
tions based ou the classical theory of elasticity, reference 2-1. As a result, equations related
to the structural properties of an aircraft are derived in terms of a coordinate system relative
to which rotations of the structure are very small. Requiring the Reference Axis Sysiem to be
a mean reference frame satisfies this requirement.

Kinematics based on motions of and motions relative to a mean refcrence frame are
par*icularly advantageous. Motions of a mean reference frame are governed by equations of
motion identical in form to the equations of motion for a rigid aircraft. Consequently, the
parameters derived from the equations of motion and used to evaluate stability of a flexible
aircraft are identical in physical significance with the parameters used to evaluate stability of a
rigid aircraft. Also, because rigid body motions underlie all of the motions involved in the
_ stability analysis, wind tunnel test data acquired from rigid wind tunnel models may be used
as direct empirical corrections in the FLEXSTAB systein analysis.

The remainder of this section is devoted to deriving kinematic relations associ::ted with
the aerodynamics of the FLEXSTAB system. These kinematic relations are derived in
section 2.3.3. They relate flow incidence at the surface of an aircraft to its ~:ometric shape,
elastic deformation, rigid body motions, and control surface deflectiuns. Sectio:: 2.3.3 also
contains a derivation of the relations desr ribing variations in ‘ne dyrniamic pressure and Mach
number arising from aircraft motions. Finally, relations describing motions of the wake of an
aircraft relative to the aircraft are derived in section 2.3.4.



2.2 COORDINATE SYSTEMS
2.2.1 Inertial Axis System

The Inertial Axis System (X', Y', Z') is earth fixed and is oriented relat.ve to the earth as
shown by figure 2.2-1. The Z' axis is vertical, positive downward. The directic of the X' axis
represents an initial heading of the aircraft, and the Y' is oriented to form < right-handed sys-
tem. The origin of the Inertial Axis System is at some initial location of the aircraft’s center
of gravity.

2.2.2 Body Axis System

The origin of the Body Axis System (Xp, Yg, Zg) is at the aircraft’s center of gravity
and moves with this center of gravity along the flight path. The Xg,Zp plane coincides with
the undeformed aircraft’s plane of symmetry with Xp positive forward and parallel to the
undeformed centerline of the fuselage, figure 2.2-1. The orientation of the Body Axis Sys-
tem relative to the Inertial Axis System is described in terms of Euler angles. The notation
and arrangement of reference 2-2 arc used—the heading angle is denoted as ¥, the pitch atti-
tude as @, and the angle of hbank as ¢. Ignoring the shift of the origin along the flight path,
the Inertial Axis System is related to the Body Axis System by the following transformation:

X” XB
Y' = [T] Y (2.2‘1)
B
2° Z
where B
(T] =

cosfBcosY sin¢sinbBcos¥-cos¢sin¥ cosésiniessVY+singsiny
cosf8sin¥ sin¢sinfBsin¥+cosyco3t cosésindsin¥Y-sindcosy
-5in® sin¢cos cosdcosh

2.2.3 Fluid Axis System

The \ luid Axis System (X, y, z) (fig. 2.2-2) is initially aligned with the Body Axis Sys-
tem: however, th origin may be located arbitrarily on the plane of symmetry. The x axis is
positive aft; the z axis is positive upward, and the y axis is positive along the right-hand wing.
The arrangement is that used in most texts on the subject of acrodynamics, e.g., reference 2-3.
The Fluid Axis Syste'n moves with a steady velocity, U (t=t,), in the negative x direction and
is in motion relative 50 the Body Axis System. Figurc 2.2-2 shows the orizntation of the two
axis systems at the instant of time under consideration, t = t. At this instant of time they
are related by

X = XCg - XB

y a Y at t=t, (2.2-2)
B

2% 2.4 "7



Flightpath —_

Y'

z.

FIGURE 2.2-i.--INERTIAL AND BODY AXIS S YSTEM:'.’

F!GURE 2.2.2.-BODY, FLUID, AND REFERENCE AXIS SYSTEMS AT TIME t =t
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where (Xcg, 0, ch) are the coordinates of the aircraft’s center of gravity in the Fluid Axis
System.

, The Fluid Axis System (fig. 2.2-3) is a portable axis system. The Body Axis S'’stem is
displaced from the Fl:tid Axis System as shown by figure 2.2-3 at instants of tiine 1ullowing
the initial instant of time under consideration. The .ranslational and rotational velocities of
the Body Axis System relative to the Inertial Avis Svsten, are
F o= Ulg + Vi, + WK
c B IB "B at tet
0 (2.2-3)

£
a

- c N o
w = Pip + Q7p * Rkp, respectively;
while the Fluid Axis System is nonrotating and is trarslating with the steady velocity. Uig.
Even though nonzero values of V, W, and @ ar.d their time rates of change cause these

two axis systems to become separated with time, they are realigned by shifting the Fluid
Axis System at any new instant of time under consideration—hence, the term portable

axis system.

v
B
Zg

Time = t Time > %
FIGURE 2.2-3.—FLUID AXIS SYSTEM AS A PRRTABLE SYSTEM

Since the Fluid Axis System moves reiative to the Body Axis System. the velocity of a
fluid particle can be described as either velocity Q relative to the Fluid Axis System or
velocity V relative to the Body Axis System. iese two velocities are related by the expression

* > > > -
G =1+ Ve *wx 7T at t=t, (2.2-4)

where T is the position of the fluid particle relative to the origin of the Body Axis System and

V. = VSB v WK

R B at t:to (2.2-5)

is the velocity of the Body Axis System relative to the Fluiag Axis System at time t =t .



2.2.4 Refcrence Axis System

The geometry, structural propetties, and mass distribution of an aircraft are described in
terms of a second body-ﬁxed coordinate systetn termed the Reference Avis System (X,Y,2).
The Reference Axis System coincides with the Fluid Axis System at the instaat of time under
consideration (t = t;) and is relat=d to the Body Axis System (Xg, YB. Zp) by a transforma-

tion identical with that of equation (2.2-2), viz

X = xcg - _xB - z
Y= YB . for all © ';, (2.2—6) -
N Z = zcg - ZB N =

'l'he ummformauon given by equauon (2.2-6) holds fc all tnnc thus, the surfaoe of the
aircraft may be exptmd analytically as : :

6(X,Y Z,ﬂ.‘ =0 - (22.7)
where the nme dependence is only a mmquence of elastlc defonnatlon and control surface
deflections. .

225 Stability Axis System

The Stability Axis System, a third body-fixed axis system, has the origin at an Aéro-
dynamic Moment Reference Point, i.c., the point about which the aerodynamic moments
~ involved i stability de. | .atives are measur=d (fig. 2.2-4). The coordinates are denoted as

Zs %8
FIGURE 2.2-4.—-BODY AND STABILITY AXIS SYSTEMS
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Xs. Y Z,. The X axis is positive forward and aligned with the projection of V( on the air-
craft planc of symmutry (see sec. S). The Y axis is positive along the right-hiand wing, and Z

s positive downward. The Stability Axis Systh is obtained from the Body Axis System by a
rotation, o). about the Y axis and a translation of the origin, AX, from the center of “ravity
to the Acradynamic Moment Reference Point, figure 2.2-4. The trunsformation of coordinates,
therefore, is miven by

XS = )(Bcosa1 + 2851na1 - AXcosal

S YB (2.2-8)

.S -X331nai + Zchosa:L

<
]

+ AXsina

N
"

1

The fundamental axis systems and their functions in the FLEXSTAB system analysis are
summarized by table 2.2-2.- ‘

2.3 KINEMATIC DESCRIPTION

This section contains a development of the kinematics of the FLEXSTAB system
describing motions related to the dynamics of a flexible aircraft. The equations governing the
dynamics must be expressed in terms of (notions relative to an inertial reference frame. The
kinematics derived here satisfy this requirement but employ moving axis systems as inter-
mediate frames of reference. Motions relative to inertial reference frames (the Inertial and
Fluid Axis Systems) are introduced in sections 2.3.1 and 2.3.3. Moving axis systems (the
Body. Reference, and Stability Axis Systems) are introduced in section 2.3.2 where they are
given the properties of a mean reference frame—properties which are discussed in detail in
section 2.3.2.

In sectior: 2.3.2.1. kinematics are developed for a moving axis system having an
unspecified translational and rotational velocity relative to the Inertial Axis System. The
velocity of the maving axis system is determined in section 2.3.2.2, by minimizing the kinetic
energy of the aircraft apparent to an observer in the moving axis system. The moving axis
system is then 2 mean reference frame. The conditions determining velocity. in section 2.3.2.3.
- of a moving axis system and making it a mean reference franse arc shown to be nonintegrable
constraint conditions. These are constraints on the deformation of a flexible aircraft and they
are required, in scction 4, to develop the dynamic equations from Hamilton’s principle. In
section 2.3.2.4 an approximation is introduced which makes the constraint conditions
integrable. The validity of this approximation is examined in section 2.3.2.5 for two types of
motion pertinent to aircraft stability evaluation: (1) steady motion and (2) unsteady
perturbation motion about a steady reference motion.

The kinematics of the atmosphere surrounding an aircraft are considered in sections 2.3.2
and 2.3.4. The kinematics of a fluid particle moving along the surface of an clastically
deforming aircraft are developed in section 2.3.3. This development Ieads to the surface
boundary condition used in deriving the aerodynamic theory of the FLEXSTAB system in
section 3. The surface boundary condition is derived in section 2.3.3.1 and it is lincarized for
small flow incidence in sections 2.3.3.2 through 2.3.3.5. Section 2.3.3.6 contains a derivation
of formulas describing variations in the dynamic pressure and Mach number * the surface of a
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moving aircraft. In section 2.3.4 the kinematics describing motions of an aircraft relative to its
wake are developed.

2.3.1 Motion Relative to the Inertial Axis System

In the following an aircraft is considered to be a continuous, flexible body made up of
differential mass elements pydV undergoing motion relative to the Inertial Axis System,
figure 2.3-1. The motion is described by a vector field as follows:

hadl Rl Badl indE Bl Baal | Il Badh Bl |
r().YZt) =X(XYZ,t)1 +Y(XYZt)]'
(2.3-1)
~ETETY
+Z (X,Y,Z,t) k '

where :,; k' are the unit base vectors of the Inertial Axis System and the quantities X', Y
Z' are the coordinates of the differential mass element in the Inertial Axis System at a
reference instant of time t = i, i.e., the quantities X Y Z’ are the Lagrangian coordinates of
the differential mass ¢lement, paues 29-30 of reference 2-1.

The velocity of the differential mass element is computed from the moticn, i.e., equation
(2.3-1). as follows:

it d __B_X_':' 3_’1:': + 32
(XYZt)=3t1 e ) : (2.32)

This expression descnbes at time ¢t , the velouty (measured relative to the Inertial Axis
System) of the differential mass elemen' located at X', Y Z'attimet= t,- Equation (2.3-2)
also defines the operator d/dt as the time rate of change apparent to an observer fixed in the
Inertial Axis System.

2.3.2 Mean Reference Frame

In this section the motion relative to the Incrtial Axis System, section 2.3.1, is expressed
in terms of an intermediate reference framc.

2.3.2.1 Moving reference frame. —Consider a rectangular, Cartesian coordinate system in
motion relztive to the Inertial Axis System, figure 2.3-2. The origin is at the moving point P
and has position p P/(t) relative to the origin of the Inertial Axis System. The position of a
differential mass element, equation (2.3-1), is now expressed as

R O

>,

v = Eg(t) + P(E,n,T,t) (2.3-3)

where p(£ n §' t) is the posmor elative to the moving axis system expressed in terms of the
Lagrangian coordinates E 1. { i.c., the coordinates of the mass clewnent in the moving axis
system at the reference instant of time t = to The relative motion has the following expanded
form:

-~

= gcg:“,Cat)ip + n(gsn3§3t)jp + C(E,H,C,t)kp (2.3-4)
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FIGURE 2.3-1.—POSITION AND VELOCITY RELATIVE TO INERTIAL AXIS SYSTEM

z
FIGURE 2.3-2.—POSITION AND VELOCITY RELATIVE TO A MOVING REFERENCE FRAME
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where ’i\p, ?p,ﬁp are the unit base vectors of the moving axis system—time-dependent quanti-
ties for an observer in the Inertial Axis System.

The velocity of the mass element relative to the moving axis system is computed from

equation (2.3-4) as
8p - &7 anT L At . -
5 = Sélp * 3ip t Rk (2.3-5)

This expression describes the velocity (measured rgl'agve to the 1.-oving axis system) of the
mass element located at P at time t and located at €, 4, at time t = t_; equation (2.3-5) also
defines the operator §/5¢ as the time rate of change apparent to an observer in the moving axis
system.

The velocity relative to the Inertial Axis System, equation (2.3-2), may be computed
from the motion as given by equation (2.3-3). The result is

-»"‘ Ty - - 6+

dt dt (2.3-6)

P £p n-p tp 23-7)

is the rotation rate of the moving axis system relative to the Inertial Axis System.

2.3.2.2 Moving axis system - - a mean reference frame. —The equations of the preceding
section describe motion in terms ol m: axis system which is translating and rotating with the
velocities di;(;/dt and &, relative to t. = Inertial Axis Systen:. In this section six conditious are
introduced which determine the compos.>nts of r!b'o/dt and @,,. These conditions make the
moving axis system a mean reference frame, references 2 4 aiid 2-5, and cause the motion of
the moving axis system to be such that it is readily idertified with a rigid body motion, i.e.,
the motion appropriate for » boay-fixed axis svetem.

The six. conditions are derived from the kinetic energy associated with motion relative to
the moving axis system, viz.,

Ko si[8. 8
rel = 7 )t tPa (2.3-8)

and are obtained by minimizing this kinetic energy with respect to the components of d'ﬁo' Jdt
and c'Sp. The minimizing conditions are represented symbolically by

2k
Mrel. . 4 ana rel. _ (2.39)

s (dp'/dt) a(Zp)
0
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Expanding the relative velocities appearing in the kinetic energy, equation (2.3-8), using
equation (2.3-6) leads to -

: R - LI 3 S SR SO - LR S SIS
Kper, = 7 |y -8 -3 x B - (' - $ - 3x Brogan

Now, applying the minimizing conditions, equations (2.3-9), to this expression for the kinetic
energy yields two vector equations representing six conditions which may be imposed on the
six components of dp,; /dt and &, These conditions are found to be

M (d;' + 3 xR = ar' o gy (2.3-10)
I T Y " Jydt Pa -
and
d+' e > > > ar”
M(R x E%’) + va * (wpx p)pAdV = vp x FeFadV 2.3-11)

where M is the total mass of the aircraft, i.e.,
M=z [, pav

and R is the position of the center of mass relative to the origin of the moving axis system, i.e.,

b d

-1 »> . 6. =n.
§ = i j"ppAdv and E‘ =0

The moving axis system is seen to be a mean reference fraine if its motion is determined
by the following two requirements:

1) The momentum of a point mass M at the center of mass moving v/ith the moving
axis system is equal to the total linear momentum of the aircraft, i.e.,

4!
Iva-:t- pAdV .

2) The argular momentum about the origin of the moving axis sytem, of the aircrait,
as a rigid body, moving with the moving axis system, is equal to the total angular
momentum of the aircraft about the origin of the moving axis system, i.e.,

[ » _ epr
JVP x at pAdV.

Thus, the moving axis system is a mean reference frame if its coordinates are taken to be
Lagrangian coordinates (i.e., fixed to the undeformed aircraft), and if the momentum of the
aircraft, as a rigid body, is equated to that of the aircraft as a deforming body.
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The physical significance of equations (2.3-10) and (2.3-11) is further borne out when
the origin of the moving axis system, now a mean reference frame, is at the center of mass of
the aircraft and is taken to be the Body Axis System. When these equations are expanded on

.the Body Axis System,

2 dr!
MU = 1B . Iv-d—t- pAdV, (2.3-12)

2 ar' - dz'

MV = g ° IV at DAdV, MW .= kB . Jv Jt DAdV
and _ 2 + dr'
IXXP - IXYQ - IXZR = 1 IV F > 35 p.4

>

c dr'
Tood = I, P = I, R = . * J P x £ p,dv

YY X YZ B v dt "A (2.3-13)

- > g

TzzR = IzxP - IzyQ = kp ° Jv P X Ft PadV

The left-hand members of equations (2.3-12), those following from equation (2.3-10),
express the components of momentum of a point mass moving with the velocity ' the
aircraft center of mass and equate these components to the coinponents uf total linear
momentum of the aircraft. The left-hand members of equations (2.3-13), those following
from equation (2.3-11). express the components of angular momentun: of a rigid body
rotating about its center of mass. The moments and products of incriia appearing in
equations (2.3-13) are computed for the shape of the aircraft at the present instant of time.
These quantities are time dependent and have different values at a later instant of time.

If equations (2.3-12) and (2.3-13) are differentiated with respect to time, d/dt, then they
can be equated to the components of the applied force resultants at the center of mass, i.e., the
total force and couple resultants of the applied forces. The resulting equations can be inter-
preted as equations of motion governing rigid body degrees of freedom. If, further, as an
approximation, the time dependence of the moments and products of inertia are ignored,
then these equations reduce to rigid body equations of motion. This approximation is used
in the FLEXSTAB system analysis.

2.3.2.3 Mean reference frame constraint conditions. —For the structural theory cf sec-
tion 4, the motion of an aircraft, equation (2.3-1), must be expressed in terms of a displace-
ment field, figure 2.3-3. The displacement field is introduced in terms of the Reference Axis
System by expressing the aircraft motion as follows:

~ o~ A ~ o~ e

r' o= ?é(t) +B(X,Y,Z, ) + d(X,Y,Z,t) (2.3-14)

_yhcre? is the position of a differential mass element relative to the Inertial Axis System:
ro(1) is the position of the center of mass relative to the Inertial Axis System:

~

IS (2.3-15)

R(X,Y,Z,%) = (i-iCG>i + (§-§C3>j + <E-ice



is the position of the differential mass e!emcnt relitive to the center of mass with the aircraft
moving s an undeforming body, -XCG’ YCG' zCG being the Lagrangian coorq”ingei of the
center of mass of the undcformed body in the Reference Axis System; andd(X, ¥, Z, t) is
the elastic Zisplacement of the differential mass element from its location in the undeformed
shape to its location in the deformed shape.

The components of T contain only the Lagrangian coordinates of a differential mass
element and the coordinates of the center of mass of the undeformed shape of the aircraft;
the components of T, therefore, are independent of time for an observer in the Reference
Axis System fixed to the undeformed shape. As a result of this, the velocity of a differential
mass element is found from equation (2.3-14) as

> >
A SN R %Eti, (2.3-16)

Replacing the velocity vector 8p8t in the relative kinetic cnergy expression, equation (2.3-8),
by the velocity vector §d]5t, the components of d?oldt and & are chosen to minimize the
relative kinetic energy. These operations make the Reference Axis System a mean reference
frame and lead to the following conditions on the displacement field:

and (2.3-17)

The conditions on the dispiacement field given by equations (2.3-17) are used conversely
to make the Reference Axis Sysicns a mean reference frame. Thus, when the displacement
field represents position relative to an unueforme 1 shape fixed with respect to the Reference
Axis System, as in equation (2.3-14), and when the displaceinent field satisfies equations (2.3-17),
the Reference Axis System is a mean reference frame. From this point of view (the one adopted
in the FLEXSTAB system), equations (2.3-17) can be interpreted as six constraint conditions
constraining the motion of the Reference Axis System relative to the moving aircraft. For this
reason equations (2.3-17) are called “mean reference frame constraint conditions.”

Requiring the Reference Axis System and, therefore, the other body fixed axis systems
to be mean reference frames has several interesting consequences. Equations (2.3-17) show
that the motion described by the displacement field does not contribute to the total linear
and angular momentum as measured by an observer fixed to the Re ™ rence Axis System. Also,
if the kinetic energy of the aircraft is computed using equation (2.3-16) and if the mean
reference frame constraint conditions are applied, the kinetic energy is expressed as a sum:
the kinetic energy of a rigid aircraft moving with the Reference Axis System plus the kinetic
energy arising from the displacement field, i.e.,

> -

dr’ dr’ -
‘l oo___..o l-’o o-'
K= 73 gt Mt g Tews

P

§d . &d
Iv 5t © 8t PalY
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where -I'tis the inertia tensor and is a function of the displacement field. Also, since there is no
kinetic energy due to rigid body motion relative to the Reference Axis System, it follows that,
barring the existence of linkages and thermal deformation, motion relative to the Reference
Axis System is always accompanied by a change in strain energy; thus, a displacement field
satisfying equations (2.3-17) might properly be termed an elastic displacement field. One addi-
tional observation is that the total energy of the aircraft apparent to the Reference Axis
System (i.e., the sum of the strain energy and the relative kinctic energy) is an absolute mini-
mum. This observation follows from the above and the theorem of minimum strain energy,
page 289 of reference 2-1.

The foregoing characteristics of motion relative to a mean reference frame are note-
worthy; but the characteristics listed in section 2.1 and demonstrated in section 2.3.2.2
are those of primary importance to the FLEXSTAB system analysis method, viz., the motion
of the body fixed axis systems can be identified with that of a rigid body when the motion
of the aircraft relative to them satisfies the mean reference frame constraint conditions.

Deformed position

——— Sy
- -

Y
/
/7
Ve
- ! Undeformed position
[
Center c.f mass l /
X'  before and /
after deformation l /
Y l /
z ] | /

FIGURE 2.3-3.—ELASTIC DISPLACEMENT

2 3.2.4 Approximate mean reference frame constraint conditions.—The FLEXSTAB
system is formuiated using an approximate form of cquation (2.3-17), i.e., the constraint
condition which determines the rate of rotation of the mean refcrence frame. The approxima-
tion consists of setting to zero the cross product of the elastic displacement vector with its
time rate of change i.e.,
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This is a valid approximation if the two vectors d and §d/5t are nearly parallel; and, for
conventional aircraft structural coniponents, this is a valid assumption. Thin lifting surfaces
such as wings and tail surfaces are pilatelike in that the dominant elastic displacement and
displacement rate are both normal to a surface and hence parallel. Slender body shapes such as
a “aselape are beamlike, with the dominant elastic displacement and displacement rate normal
to an elastic axis and in only one direction. Introducing the above approximation into
equation (2.3-17), the constraint condition detc:mining the rotation rate of the mean axis
system becomes

N
rxﬁ«pdv=ﬁ'.
v 5t AT

The constraint conditions, using the above approximations, are integrable with respect to
time and are expressed as follows:
I ap av ¢
v

A 1

and

¥

IV r x dpAdV 32

wlere 61 and 62 are constants of integration. The constants of integration are set to zero and
the constraint conditions become (cf., equations 4.73 and 4.74 of reference 2-6)

A
and (2.3-18)

J 3dp.av = 0
v

The displacement vector contained in equations (2.3-14) is required to satisfy these condi-
tions. Since the elastic displacement field specifies the deformed configuration of the aircraft
relative to an undeformed configuration, the six conditions represented by equations (2.3-18)
determine a coordinate system in which the coordinates of the undeformed differential mass
elements are independent of time, i.e.,

-+ ->

~

B = B(X,Y,2)
The motions of a flexible aircraft described by equations (2.3-1) and (2.3-14) are related as

o e, o~ -~ 2.3-19
F'(X,Y,Z,t) =?~3(t) + F(X,Y,2) + AX,Y,Z,0) ( )
where i, ?, Z are the Lagrangian coordinates in the Reference Axis System (i.e., the
coordinates of the differential mass elemen.s in the reference, undeformed configuration). The
constraint conditions, equations (2.3-18), therefore provide the basis for introducing a
body-fixed axis system relative to which elastic deformation is measured.
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2.3.2.5 Reference and perturbation motions. —In the stability analysis periormed by the
FLEXSTAB system, the motions described in the preceding are evaluated when an aircraft is
in either of two states of motion: (1) a steady reference flight condition and (2) an unsteady
perturbation motion about the steady motion of the reference flight condition. In the steady
reference flight condition a differential mass element ot the aircraft has a velocity relative to
the Inertial Axis Svstem which is given by
ar'y _ ¥ >

Gt = 1ty

where VC! = (d'r‘o' /dt)l and 531 are the steady translational and rotational velocities of the
Body Axis System relative to the Inertial Axis System, equations (2.2-3). In the perturbation
motion the perturbation velocity of the diftferential mass element is given by

d;'-v‘+_‘x(f +3)+ a0, xd +63
G " Ve T 1 p’ TN p o 8tF -

This expression is replaced in the FLEXSTAB system by the tollowing approxitation. which
neglects the cross product of rotation rate and perturbation displacement:

>
ar! S + 7 o  , 8d 2.3-20
(35 )p S vep T Wp T P17 OEEE. (2.3-20)
The consequences of the approximation introduced by equation (3.3-20) are apparent

when they are applied to the kK aetic energy of an aireraft. The kinetic energy. when the
percurbation velocity is given by equation (2.3-20), appears as follows:

K=K

where

] hl
‘L\,’Y' -
e

e

+

- > L, > .
(w- x r ) » (wy = T.)p,dV
_’L A - 1 A

(R
o)

(
)

is the Kinetic energy tor the steady reference flight condi:ion and

= ~ -> , > -> -~ - R
ooz o= MYVS - MV T vk (o + ..w1)><r' Do (w, x v.)z,aV
l\ﬂ - Ym0 fels] Cl 2 tr p - l :\ e A
™ 4 -~ > 3

- . (2.3-22)
] >3
B Cd — Sd
+ = e =P di
-Jw §* 5T Pac

is the perturbation Kinetic energy. The neglected Kinetic en2rgy is given by the fellowing
expression:

(2.3-23)
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The approximation, equation (2.3-20), is seen to cause part of the perturbation kinetic
2nergy to be neglected; namely, that which arises irom rigid-body rotation in f'JnJunctlon
with a perturbation change in shape.

The kinetic energy which is retained in the formulation is separated into a sum of terms
each having a clear physical significance. For the reference flight condition

K, = K(VCI) + K(?El)

whee (2.3-24)
KW, ) = 2 mv 2
1 1

is the reference kinetic energy arising from rigid-body translaticn and

> - 1 - > . -> -
K(wl) = 7JV (ml x 1‘1) (ml x rl)pAdV

is the reference kinetic energy arising from rigid-body rotaiio,. ¥or the perturbation motion

-> ->
Kp = K(VCP) + K(dp) + K(a‘P) (2.3-25)
where i]’ ] 2 V N
K(V. ) = = MV + M7, « V
Cp 2 ¢ Ci 'Cp

is the perturbation kinetic energy arising from rigid-body translation,

> _ 1 -> -+ > > >
K(wp) = 7JV [(wP + 2wy)%ry) o (wp X I‘l)pAdV

is ti.c perturbation kinctic energy arising from rigid-body rotation, and

1 55 &dyp
Ma ) = ﬂv 5tF 5t Pady

is the perturbation kinetic energy arising from elastic deformation rate,

The error int: oduced by the approximation, equation (2.3-20), is related to the
perturbation kinetic energy arising from rigid-body rotation. Therefore the validity of the
approximation may be evaluated by examining the magnitude of the following ratio:

-> -+ -+ . > >
AK IV[(wl + mp) X (2r1 + Ep’ . [(m1 + wp) x ap]pAdV
- (2.3-26
-> . -+ o >
[v[(wp + /.u-l)>< r]_] (w_ x r‘l)pAdV
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Carrying out the indicated integrations leads to a comparison in terms of phy sical compo-
nents. The denominator of equation (2.3-26) becomes

2 2,
(p~ + 2pPl) + I (r= + ZrRl)

K(w ) = I
wP) 1

2
XX YYl(q 200 * Igg,

-2lle(p + 2P))

where IXX. 1Yy, 12z, IXZy, IXY}» Iyz are the moments and products of inertia in the
reference flight condition and p, q, r components of perturbation rotation rate expanded on
the Body Axis System, i.e.,

>

+ >
ig * alp * rky

>
u) =
P b

The numerator of equation (2.3-26) becomes

) Y 2 .
MK, = Top (Pp o+ P07+ Tyy (Q + )% % Ty <o
D P L

—r
(8]

+ 21 (Pl + p)(Rl + r) + ZIXYP(PJ + p)\Ql +q)

+ ZIYZ (Ql + q’ (R1 + )
P
where IXXp» IYYp, lzzp, [xzp, Ixyp. lyzp are perturbations to the moments and products
of inertia arising from perturbation elastic deformat.on.

The moments of inertia for conventional aircraft configurations (IXX;, Iyyy, 1Zz ) in
the reference flight condition will be at least an order of magnitude iarger than the perturba-
tions lxxp, lyyp, lZva It follows therefore that the contribution to the error from the
terms containing these quantities is negligible if the components of rotation rate n the
reference flight condition (Pl’ Q] . R]) have at most the same order of magnitude as their
perturbation values, p, q, . Also, if the elastic deformation in the reference condition is small
in comparison to its overall dimensions, all products of inertia contained in the ratio with the
exception of 1X7 are small in comgarison to the moments of inertia in the reference flight
condition. The products of inertia terms therefore contribute no addiiional restrictions on the
validity of the approximation;and the conditions which must be satisfied for equation
(2.3-20)to yield a valid approximation are seen to be as follows:

1) O(P})=0(p), 0(Q)) = O(c), O(R) = O(r)

2) Perturbation changes to the dimensions must be an ord:r ot magnitude less than the
dimensions of the aircraft in the reference flight condition.

These conditions are usually satisfied in the case of large aireraft: hence, vquation (2.3-200 is
taken tc be a valid approximation for the FLEXSTAB < iem.
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The kinematic approximation, equation (2.3-18), and the perturbation expansion about a
steady reference flight condition, permit the constraint conditions, equations (2.3-17), to be
expressed as follows:

For the reference flight condition,
>
J[“,alp A2V = 0
and (2.3-:27)

* -
IVP x H]pAdv =8

woere T=T (X. Y Z) describes an undeformed configuration of the aircraf* -termed the jig
shape—and dl is the d=formation in the reference flight condition; whise, for the disturbed
flight condition,

[V'&p pdv = T

and (2.3-28)

[ % 3 D v = O

Jy 1
where T) =T} (X, ¥, Z) describes the configuration of the aircraft in the reference flight
condition.

2.3.3 Fluid Motions

This portion of the kinematic description is aimed at developing formulas describing
certain aspects of the fluid motion determined by the geometry of the aircraft and its motion
relative to the Fluia Axis System.

2.3.3.1 Surface boundary condition.—The surface of the aircraft having the spatial
(i.e., Eulerian) description,

G(X,Y,Z,t) = 0 , (2.27)

represznts a solid boundary to the fluid; therefoie, the velocity of the disturbzd fluid must be
such that fluid particles do not penets ite the aircraft’s surface. This condition represents the
surface boundary condition for the fluid flow problem and is expressed analytically for fluid

particles iocated on the surface and having Eulerian coordinates satisfying equation (2.2-7) as
follows:

%% +V %G =0 (2.3-29)



where V is the fluid velocity relative to the Reference Axis Syster.. There is an additional
requirement that skin rariicdles at the surface of the aircraft must remain at the surface as it
undergoes motion duc ¢2 <lastic deformation or control surface deflection. This surface
bour: dary ccndition for skin particles whose Eulerian coordinates satisfy equation (2.2-7) is
expressed as:

3G , (8d,. e - .
=t G Ve =0 (2.3-30)

where 837& is the velocity of skin particles refative to the Reference Axis System. Combining
equations (2.2-29) and (2.3-30) leads to the foallowing surface boundary condition:

->

-8 -q=0 (23-31)
where
&= e Vic - ke (2.332)
is the unit vector normal to the surfac:.
Recalling the velocity relationship
V=9-7;,-ux%, at t=t, (2.24)

the surface boundary condition is expressed us

-

d >
5 " at tst_ (2.333)

(=]

GeRe Tyt bxts

where T is the position vector for a fluid particle on the surface. This form of the boundary
condition is appropriate to the stability and control problem because the fluid velocity is
related by equction (2.3-33) to the aircraft’s velocity, elastic deformation, and control sur-
face dcilections. The boundary condition is further developed by letting the fluid velocity
T oe expressed as a perturbation *0 a uniform freestream,

g=ud 9 (2334)

where U is the steady translational velocity of the Fluid Axis System relative to the Inertial
Axis System. The vectos

Vo= oui o+ ovi o+ ouk (2.3-35)
is the nondimensional perturbation velocity of the fluid cxpanded on the Reference Axis
System. Substituting equations (2.3-34) and (2.3-35) into the surface boundary condition.
equation (2.3-33) leads to

s
1 -+ > 83 -
V= .+ (V.. + »p x r + =) n
n x» Uk g’ (2.3-30)



where

v S nev (2.3-31)
n
is the nondimensional component of perturbation velocity normal to the surface.

The velocity vector in the brackets of equation (2.3-36) represents the velocity, relative
to the Fluid Axis System, of a point on the deforming surface of the aircraft, i.e.,

VS(X,Y,Z,t) = VR(t) + w(t) x P(X,Y,Z,t) + %%(X,Y,Z,t) (2.3-38)

Therefore, equation (2.3-36) may be expressed as

_ 1+g . > K
Vn = -nx + ﬁ\l n (2.3 39)
while equation (2.3-33) becomes
- *S >
§-n=V+n (2.3-40)

These two results, i.e., equations (2.3-39) and (2.3-40), lead to a geometric interpretation of
the nondimensional velocity component v, relating it to the angle through which the
freestream velocity vector Ut must be perturbed, making the path lines of fluid particles lie
along path lines traced by points on the surface. This angle is termed the flow incidence angle.

The flow incidence angle is viewed in figure 2.3-4 for three cases: (1) flow incidence due
entirely to geometric slope of the surface, (2) flow incidence due eniirely to the velocity of
the surface along the surface normal, and (3) a ccmbination of (1) and (2). Taking posiiive
flow incidence to be a positive rotation about the Y-axis, the flow incidence in cases (1) and
(2) is as follows:

1

Wof
|
oo

(2.341)

Case (2): sin‘l‘2

13, |

When cases (1) and (2) are combined, i.e., case (3) shown by figure 2.3-4, the flow incidence is
given by

Case (3): sin¥ = sin(¥; +¥,)
(2.342)
= sin\ylcosty2 + cos‘l’lsin\vz

R
[19]
b



FIGURE 2.3-4.—ANGLE OF FLOW INCIDENCE



where

cosy, _U(L + uy)
1R
and COSYZ = Ul + uz)

13, 1

2

2.3.3.2 Linearized surface boundary condition.—~The FLEXSTAB system is based on
an aerodynamic theory (section 3) which is a linear first-order approximation. This is obtained
by assuming

<5
[vl = 0Ce), e<<l (2.343)
The theory is applied in the FLEXSTAB system to bodies with nonplanar surfaces w.ich may

have any dihedral angle between 0 and 2x radians; thus, the components of the unit normal
vector ny and nz have the following ranges of magnitude:

-1<ny<1 -1<n,<1 (2.3-44)
Applying these orders of magnitude to equation (2.3-39), it follows that
vS Wo
ng = 0(e), i o(e), T - 0(e) (2.345)
where vS and wS are the components of VS expanded on the Reference Axis System.
Expanding the surface boundary condition, equation (2.3-39), leads to
_ 1,..S S 3
Vo ST nx+ﬁ(U nx+ v nY+ an) (2.346)
and assuming that
US
g - 0(e) (2.347)

(i.c., the X-component of surface velocity arising from the rotation rate and the elastic
deformation rate is of order € compared with U) a first-order approximation is obtained by
deleting (US/U)nx = O(ez),

1,.,S . S
+U(V nY t W .Z)

. _ (2.348)
vn - nX
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Recalling the expressions for flov: incidence angle, i.e., equations (2.3-41) and (2.3-42), these
expressions are seen to reduce to (he following first-order approximations:

1t

¥ sin Y2 ¥,

sin ¥

cos ¥ = 1 cos ¥, 1

and

Y =¥, + ¥,.

From these approximate formulas and equation (2.3-48) the first-order approximation to the
flow incidence angle is found to be

_ 1,,.,S. s
¥ = nx-ﬁ—(v nY+W nz)~ (2.349)

The process leading to this linear result is considered in detail in the following develop-
ment. Case (1) and case (2), shown by figure 2.3-4, represent the two mechanisms whereby
flow incidence arises at the aircraft surface. In case (1) the flow incidence arises from the
geometry of the surface when that geometry in the Fluid Axis System is independent of time.
In cuse (2) the flow incidence arises from motion of the surface relative to the Fluid Axis
System. In case (3) the flow incidence arises from a simultaneous occurrence of the two
mechanisms of cases (1) and (2). The surface oboundary condition, equation (2.3-46), is
linearized in the following by first linearizing the two specia! forms obtained for cases {1) and
(2). Once these two special cases are linearized they are combined to obtain the linearized
boundary condition for the comtined, general case. This approach is used to clarify the
develupment of the linearized boundary condition. Since the results are linear equations, the
combined linear boundary conditions are obtained with no loss in generality.

2.3.3.3 Flow incidence for ¢ fixed surface geometry in the Fluid Axis System—
Case (1).—As shown by section 2.3.3.2, the X-component of the unit vector normal to the
surface is the quantity which gives rise to flow incidence in case (1). Consider, therefore, the
mechanisms which may influence the unit normal vector, viz., the rotation of the surface due
to elastic deformation and due to control surface deflection. The unit normal vector is
expressed as

T oA o~ o~ ~ o~ o~ T o~ o~ o~

n = n(X,Y,Z) + 3E(X,Y,z,t)xn(x,Y,Z)

-~~~ * ..~ (2.3-50)
. Kc(x,y,z,t)xn(x,Y,Z)

where

=

is the unit vector normal to the surface before elastic deformation
and cortrol surface deflection,

to
1]

t9
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3E = 1/27xd is the surface rotation due to elastic deformation, and
Kc is the surtace rotation due to control surface deflection.

The X-component of the unit normal vector is found from equatioa (2.3-50) to be

ny = fiy + (GEY CY)n -(e EZ Cz)nY (23-51)
where Oy, Oz are the components of elastic rotation and 8¢y, 8¢z are the components of
control surface rotation expanded on the Reference Axis System.

An order of magnitude analysis of equation (2.3-51) is made using the assumptions listed
by equations (2.3-43) and (2.3-44). Since ny, is of order € and Ty and iz are of order unity, it
follows from the independence of ¥ and 3 that

ﬁx = 0(e), 8,..,= 0(e), e

EY = 0(e),

EZ
(2352)
Soy = €€, Sog = 0(e),

The control surface rotations are expressed in the FLEXSTAB system in terms of three
independent control surfaces. Therefore equation (2.3-51) is expressed as

x * Opyfiy "8 gDy * Nyl t n g+ on 8 (2.3-53)

where n,x, n,y, npx relate ny to control surface deflections and the quantities 8¢, 8,, 8
are, at most, functions of time and govern the amplitudes of the control surface deﬂectlons
The amplitudes of the control surface rotations, 6cY and 8cZ’ are, however, restricted to the
order of € as in equation (2.3-52).

Combining the first of equations (2.3-41) with equation (2.3-53) and using the first order
in ¢ approximation for the sine function, viz.,

sin ¥ =¥
1o {2.3-54)

the linearized boundary condition in terms of flow incidence arising in case (1) is found as

+ 9.0, - eEZnY

(2.3-55)
¥ nexae +naX‘sa+ nr*x‘sr‘.
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2.3.3.4 Flow incidence arising from surface motion relative to the Fluid Axis
System—Case (2).—Consider the expaaded form of the surface boundary condition for case
(2), viz., the second of equations (2.3-41). Introducing the expanded unit normal vector
from equation (2.3-50) leads to

= - LevSra 5 _ s = =
¥,= - glV IRy -8yl = 8oyfig + (g, + 8.,)0,]

(2.3-56)

S~ - . -
+ W [nz + eEXnY + GCXnY - (BEY + GCY)nX]}.

In the FLEXSTAB system analysis, surface rotations about the X-uxis due to elastic
deformation and control surface deflections are assumed to have the same order of
magnitude as the rotations about the Y- and Z-axes; thus,

eEX = 0(e)

and (2.3-57)

GCX = 0(e).

This assumption in conjunction with the assumed € order of magnitude for the following
surface velocity component ratios:

S s
—g— = 0(e) and UW = 0(e)

leads to the following first order in € approximation for the flow incidence:

- _l,uS« S~
!’2- —U(Vn + Wn,).

Y YA (2.3-58)

This result is related to mouons of the aircraft by expanding the velocity componenis V3
and W5,

The velocity components VS and WE. describing the velocity of the surface relative to
the Fluid Axis System, are obtained from equation (2.3-38) as

S
v 1 - . =
T =gV -XR+ TP+ adY/st)

(2.3-59)

L PRI S A '§t)

U - (.T .- - Q dzl t

The quantities appearing in tiicse expressions are as follows: The coordinates—in the
Reference Axis Sysiem—of the surface point relative to the center of mass, i.e.,
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X
Y
and Z7z=27-12

X-X_ .,
cg

Y-Y , (2.3-60)
cg

(1]

cg;

the components—expanded on the Reference Axis System—of velocity of the surface point
relative to the Reference Axis System, i.e.,

GdY/Gt = adY(X Y, t)/at
and (2.3-61)

GdZ/St = adz(X »Z2,t)/at

and the components ot velocity of the Reference Axis System relative to the Fluid Axis
System expanded on the Body Axis System, i.e.,

V(t), W(t), P(t), Q(t), R(t). (2.3-62)

From an examination of equations (2.3-60), (2.3-61) and (2.3-62) it is apparent that the
velocity components, as expressed by equations (2.3-59), are in 2 form which is a mixture of
Eulerian and Lagrangian coordinates. Expressions entirely in terms of Lagrangian coordi-
nates are found by expressing the location of the surface point as

~ ~ .~ ~ N

PX,Y,2,t) = B(X,¥,Z) + da(X,¥,Z,t)

so that equations (2.3-59) become

S
ve 1 -~ 5
§ TGV -y K- X IR (ay ¥ T- 2 )P+ 8dy/6t]
(2.363)
ES--l-[-w-(d # Y -Y JOP - (d, + X - X_)Q + 8d_/68t)
U ~ U Y cg X cg yA :

The development to follow is based on the mixed form presented by equation (2.3-59)
treating the variables X, Y, Z as Eulerian coordinates while continuing to treat the velocit,
components ddy/5t and GdZ/Gt as quantities defined in terms of the Lagrangian coordinates
XY, Z

Consider each of the terms contained in the linearized surface boundary condition,
equation (2.3-58), letting the elastic displacement field be represented as

(X, ¥,72,t) = $i(>*<,§,i>ui(r) (2.3-64)



where?i is a mode of structural deformation and y, is the amplitude of modal deflection.
The mode of deformation is chosen such that

181 = o)
for points X, Y, Z at the aircraft surface. Also, noting that

2

= 0(L), = 0(1),

nll ;?I
<
ol

= 0(1) (2.3-66)

]

where c is the reference chord and b is the span of the aircraft it follows from the fact that
¥, = 0(e)

and trom the independence of the velocity components V, W, P, Q, R and ﬁi that

~ bP ~ ~1 A

P=2r=0(e), Q= 2—8-= 0(e), R = ]-23% = 0(e),
s _ (2.3-67)
ui = ui/U = 0(e)

The linearized boundary condition, equation (2.3-58), for case (2), therefore, is expressed as

Z - - .g)_(n ZA : A
¥,= = [(B pR + TFP + b yuidhy +
27~ 2R A - (2.3-68)
(- a- 5P - 0 ¢ ;745775 ]

where a = W/U is the approximat= angle of attack, and § = V/U is the appoximate angle of
sideslip.

2.3.3.5 Combined linearized surface boundary condition—Case ( 3).—The combined
linearized surface boundary condition is found by simply adding equations {2.3-55) and
(2.3-68) to obtain

¥ o= fiy + 8pyfly = Opofiy + o8+ n o8+ n 6, -
2%~ 27~ N
(B - =gR + —JP + ¢;pu;)ny (2.3-69)

2Y% 2X4 S
A~ - I ST AR VR
Equation (2.3-48) suggests a convenient and compact form for the surfuce boundary
condg\tio’\n to be used in section 3. Each of the quantities, multiplying the small parameters
a6, P Q, R, ﬁi in equation (2.3-69), is of order of n.agnitude unity, and can be incorporated
into three terms having the appropriate orders of magnitude by letting



A 5 _ 2X4 277, 2
vkv(t)V(X,Y,Z) =8 - —+R ¢ —b-P + d’iYu'

i (2.3-70)
M (WX Y2) = -« - 209 - 2Ky 4 4. 3
w i - b [ 1Z2°i
and
= n - n 37
Ny = Ty * OpyNy = Opgfiy + n o8, + n y8, + n 8 237D
where
¢ = 0(e) and % = 0(e)
while (2.3-72)

V_(X,Y,Z) = 0(1), W(X,Y,Z) = 0(1),

The surface beundary condition is expressed now as the sum of three terus as

¥y = ny - va(t)VnY - ﬁ)\w(t)WfiZ- (2.3-73)

This form of the surface boundary condition is used in section 3 to develop the lincar
aerodynamic theory used in the FLEXSTAB system.

2.3.3.6 Dynamic pressure and Mach number variations.—The 2ercdynamic analysis of
section 3 requires the values of the undisturbed freestream dynamic pressure and Mach
number relative to two different reference frames—the Fluid Axis System and the Reference
Axis System. The values of the dynamic pressure and Mach number measured in the Fluid
Axis System are taken to be reference values and the values apparent to an observer fixed to
the Reference Axis System are expressed as variations from these reference valuc ..

The freestream dynamic pressure and Mach number in the Fluid Axis System are
given by the definitions

=]

w

1
dp = 70,0 *Q and M_ (2.3-74)

while for an observer at the positionT relative to the aircraft center mass and fixed in the
Reference Axis System the freestream dynamic pressure and Mach number are given by
the definitions
- _ 1 > -
q = fpmV o V
and (2.3-75)



where Q and V are defined as in section 2.2.§_ but evaluated in the undisturbed stream.
Introducing the relatior:_hip between G and V, equation (2.2-4),

T =Tt e W@ + B xB) o T+ Ty +oxD)
* - -»>
. (VR + w x r)]
and ~ ’
M:%[U2+2U(’\7 @ x P e T4 (W0l x D) )
® c (Vo + o x P12
) R4 .
Assuming the components of V' and & are smail enough that their products may be
. R
ignored, first-order expressions for the dynamic pressure and Mach number are found »c

R

T =T, + 23, $(QT + R (23-76)

and

M= M_ + 5=(QZ + RY) 2.377)

where Y and 7 are the coordinates of the point of evaluation relative to th .- center of m=ss
in the Reference Axis System. The variations in dynamic pressure and Machi number are
therefore seen to be

Aq = 29,307 + RY)

and

AM ’%mcqiz‘ + RY).

2.3.4 Wake Motions

In addition to the surface boundary condition, the aerodynamic problem involves
boundary conditions which must be satisfied on the surface of the aircraft’s wake. The
kinematic description must therefore contain the location of wake surface. The wake, a
surface which emanates from sharp trailing edges of lifting surfaces, may be idea!ized as a
vortex sheet which, by definition, forms a boundary in the flow which fluid particles do not
penetrate. The actual wake surface location is therefore not known a priori, because its
location depends on the solution to the problem, viz., the motion of the fluid. If it is
assumed, however, that the freestream is not disturbed by the presence of the aircraft or the
wake itself, the wake location can be described a priori. This fictitious wake surface is
termed the Mean Wake Surface, and in formulating the aerodynamic problem the Actual
Wake Surface is considered to be ¢z2formed about the Mean Wake Surface. The effect of this
deformation is negligible for the level of approximation used in the aerodynamic theory.
The kinematic description therefore need only locate the Mean Wake Surface.



In section 3 the Mean Wake Surface is taken to be determined from the velocity of the
aircraft at the instant of time under consideration. As a result, it is sughtly dxsplaced in the
X-direction from the surface actually swept out by the path of the trailing edge of a lifting
surface, such as a wing, undergoing unsteady motion (ﬁg 2.3-5). The paths for this and
other lifting surfaces are determined by the known histary of the aircraft’s rigid-body and
elastic deform:tion motions up to the instant of time under consideration, t,, when the
Fluid and Body Axis Systems are taken to be coincic..aut. For the Mean Wake Surface to be
a vortex sheet in the undistributed freestream, it must be displaced from the surface of the
trailing edge paths by a distance aX, = G- Xo/U, where X is the point where the
displacement is measured and U is \he average forward velocnty (fig. 2.3-5). At distances X
where fluctuations in the wake surface are of significance in the aerodynamic theory, it wnll
be shown that AX /X, and AX/C are small-small enough, in fact that the effect of the
displacement AX,, is shown in the following section to be negligible. The aerodynamic
theory presently used in the FLEXSTAB system therefore assitmes that the Mean Wake
Surface is ceincident with the locus of trailing edge positions.

‘—— Path of trailing edge

Mean wake surface VZB

FIGURE 2.3-5.-MEAN WAKE SURFACE
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3.0 AERCDYNAMICS

3.1 INTRODUCTION

The aerodynamic th:ory used in formulating the FLEXSTAB system is a linear,
first-order, small perturbation approximation to unsteady, inviscid subsonic or supersonic
flow. The theory is valid provided the unsteadiness of the flow has reduced * equencies
small in comparison to urity—the low frequency approximation of refercnce 3-1, chapter 4.
The theory is applicatle t¢ arbitrary aircrait configurations which cun be idealized as a
coliection of compone 1ts classed either as thin bodies or as slender bodies*, figure 3.1-1.

Thin bodies .

Slender body

uyl
G
<
o 5
42]
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5.1-1.—TYPICAL THIN BODY-SLENDER BODY CONFIGURATION ARRANGEMENT

*Classification of configuration components as thin or siciider bodies is based on the relative
magnitudes of their thickness and aspect ratios. A thin body is essesntially planar having an
aspect ratio which is an order of magnitude greater than its thickness ratio. The aspect ratio
of a slender body is approximately equal to its thickness ratio, and its actual shape is
idealized as an equivalent body of revolution warped by a cambered centerline. Wing..
struts, fins, etc., are termed “thin bodies.” Fuselages, nacelles, pods, and tip tanks are
termed “‘slender bodies.”



The tincar acrodynamic theowy is derived trom the nonlinear theory governing
unsteady, continitous, unseps.rated. inviscid, adiabatic, and irrotationa ilow as summarized
in section 3.2.2. The derivation follows from i scquence of two asymptotic expansions. The
nonlincar theory is expanded in section 3.2.5 in terms of small paramcters which govern the
magnitudes of the disturbances produced in a uniform flow by the presence ol the aircralt.
In this cxpaniainn, the unsteadiness of all time-varying parameters may have reduced
frequencics witls orders of magnitude equal to unity. A sccond asympiotic expansion is
carnicd out in section 3.2.6 wherein the small paramceters are the reduced frequencies of the
time-varying parameiers appearing in the fiest expansion. This expansion fcads to the fow
frequency unsteady acrody namic theory.

All parameters governing the magnitudes ol the flow listurbances are related to
quantitics contained ia the surfuce boundary condition derived in scection 2.3, As shown by
cquation {2.3-36). the quantitics leading to flow disturbances (i.c.. How incidence at the
airert's surface) arise from two sources - the geometric shape of the aircraft and the
wotion of (he aircraft surtace relative to the uniform freestream. Flow incidence duc to
relative viotion of the surface is related to the motion parameters commonly used in
stubility and control technology, i.c.. angle of attack, angle of sideslip, cte.

The geowmvtric shapes of the thin and slender bodies are described analytically in terms
of coordinates on “mean™ surfaces and lines which are parallel to the freestream. The
geometry of a configuration is theyefore described entirely in terms of formulas of the
tfollowing form:

6N = E:NFN(X,Y,Z)

where 8y is the dimension of the Nth body in directions which are transverse to the

frees* zam, FN(X.Y,Z) is » sipe function which has an order of magnitude equal to unity
for points (X.Y,Z) on a mean surface or line, and €y is a small nondimensional parameter.
The entire peometric shape collapses to mean surfaces and lines which are aligned with the
ficestream when all of the parameters €y are set to zero.

Formulas describing the thickness, camber, and twist of thin lifting surfaces are
expressed in terms of cocrdinates on planar mean surfaces, figure 3.1-2. Ideally, the mean
surfaces have genzrators which lie at the area centroid of each of the airfoil cross sections of
thin bodics, f-gure 3.1-2. The planar mean surfaces cannot be placed at the mathematical
mean sur*~e for thin hodies having a smoothly varying dihedral, and thin aerodynamic
bodies witn varying dihedral are approximated by a sequence of connecting planar mean
surfaces.

Slender bodies are described about mean centerlines. The components of a configura-
tion which are designated as slender bodies are idealized as vodies with circular cross
sections, the areas of which are equal t» the cross-sectional areas of the actual components.
The centers of the circular cross sections are located at the area centroids of the actuai
sections. figure 3.1-3, and the mean centerline parallel to the freestream is at the mean
location of the section area centroids. The deviation of the section area centroids from the
mean centerline describes the body camber.
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FIGURE 3.1-2—THIN BODY MEAN SURFACE
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FIGURE 3.1-3.-SLENDER BODY MEAN CENTERLINE
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The effects of interference flows between the thin and slender bodies making up a
configuration are accounted for on mean interfersnce surfaces. In the case of thin bodies,
the mean interference surfaces are identical to the thin body mean surfaces shown by figure
3.1-2. In the case of a slender body, the mean iuteiference surface is a cylindrical surface
approximating the actual slender body surface in th: region of dominant interference flow,
figure 3.14.

- —— — = — —— — —

—\-Mean interference
surface

FIGURE 3.14.—MEAN INTERFERENCE SURFACE OF A SLENDER BODY

The mathematical problem posed by the linear theory developed in section 3.2 consists
of a set of linear boundary value problems, i.e., a set of partial differential equations (viz.,
the classical small disturbance flow equation) and boundary conditions specified at the
mean suriaces and lines. In section 3.3, solutions to the boundary value problems are
expressed in terms of integral equations. The flow incidence at the mean surfaces is given by
integrals of kernc! functions which represent flow singularities (i.e., sources, doublets, and
vorticity) distributed on the mean surfaces and mean lines. A solution is constructed by
finding the strengths of th: flow singularities which produce the flow incidence satisfying
the surface boundary conditions. Once this solution is constructed, the aerodynamic surface
pressure is computed. This calculation leads to equations relating the surface pressure to the
quantities which appear in the surface boundary conditions and which give rise to surface
flow incidence, e.g., angle of attack. These final expressions form the basis for computing
the stability derivatives required for the FLEXSTAB system analysis.

The FLEXSTAB system determines the strengths of the flow singularity distributions
using approximations similar to those of reference 1-1. As shown by figure 3.1-5, the mean
surfaces of thin bodies and the mean interference surfaces of slender bodies are subhdivided
into small quadrilateral parcls, while the mean centerlines of slender bodies are subdivided
into line segments. Siraple distributions of the flow singularities are assumed for the surface
panels and centerline segments. The strengths of these sim; I. distributions arc governed by
unspecificd parameters, S;. The flow singularity, e.g., an clement of vorticity (ref. 2-3, cq.
5-34), at the point X, Yl » Z} on the panel induces a flow incidence at the point X.Y,Z
which can be expressed as follows:

¢V (x,v,2) =T - ﬁK“(x,Y,z;xl,Y 'z (3.1-1)
1



FIGURE 3.1-5.—TYPICAL AERODYNAMIC PANELING SCHEME

Integrating this expression over the ith panel with vorticity distribution strength S;" leads to
i

!-(}\ 3 ) - a~'x VL Z)u- 2
1 4 < ]\ ’ ’ (3."_)

where

7 ]
al(x,¥,2) =-{[h - T x,v,23% LY .2 daa
- S-
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-~

. - .. vV .
and s; is the surface area of the panel. The acrodynamic influence, a; . ai the point
X. Y. Z is the flow incidence there due to the vorticity oa the i surfuce panel.

The flow singularity distributions used in the FLEXSTAB system are summarized in
table 3.1-1. Control points, equaf in number to the number of unspecified parameters, S;
are chosen at the surfaces where the boundary conditions are specified. The flow incidence
‘l’i(X. Y. Z) due to each of the panel and line segment flow singularity distributions is
evaluated at the control points, thereby generating determinant sets of algebraic equations
of the form

¥i07 1 @445 (3.1-3)
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TABLE 3.1-1. -FLOW SINGULARITY DISTRIBUTIONS

) Steady tlow X-vaiations
Regior: of ~ Flow of distribution
distribution sitwgubanity
Subsonic Supes sonic
Thin body Vot ticily Constant Constan:t
megn . i
sutfacss Sourees Lenear Linen
Stender ody Vorticity Constant Constant
NN D Wes
Slender body Doublets Quadr atic Quadiatic
centerlines Sources Constant Linear
These equations are cxpressed in terms ol matrices:
. _ o -
¥, = L. 18} 3.1-h

winere I:liil is an acrodynamic matnx describing the low incidences induced at control
points due o unit streagths of tlow singularity distributions.

The aerodynamic matax is inverted to obtan the following expression:

k]

{Si} = [a..17%{¢.}

tde
(=1
tde

(3.1-5)

where the singularity strengths are now determined trom the flow incidence at the control
potats. Expressions relating the acrodynamic pressure coetficient at the surface to the
singuiarity streagths are derived and appear as matrix equations ot the following form:

S Y o= [CrM .18 ).

- :\ N4 i (3- l ‘())
Combintag these expressions with the matrix equations above leads to acrodynamic
influeitce coctlicient equations. i.e.,

{Co b = [ . J{v.}
Ty RITHTE (3.1-7)
where the acrodvnamic influence coefficient matrix is given by
-1
= [ CPM. . 2o s .
[Akj] [bphkl][ajl] (3.1-8)

These expressions represent a solution to the aerodynamic problem solved in the FLEX-
STAB system,



The complete method of solution to the aerodynamic problem is derived in section
3.4. The problem is solved in steps following the approach outlined above. Sections 3.4.2
and 3.4.4 contain derivations of the aerodynamic pressures induced by the thickness shapes
of slender bodies and thin bodies but with the thickness shapes treated as isolated bodies
ignoring the effects of mutual interference. The steady lifting pressure for isolated slender
and thin bodies are derived in sections 3.4.3 and 3.4.5, and the solution to the steady
aerodynamic induction problem is derived in detail in section 3.4.6. The effects of steady
interference from thickness and hft are computed using the solution to the steady aero-
dynamic induction problem. This computation leads to the solution to the combined steady
aerodynamic problem in section 3.4.7, viz., the steady aerodynamic pressures due to
thickness and the steady aerodynamic lifting pressures due to camber and steady motions of
the aircraft surfaces relative to the freestream.

The method for solving the low freguency unsteady aerodynamic problem is derived in
sections 3.4.8 through 3.4.1!. The thickness shape of an aircraft is assumed to be steady,
and the unsteady aerodynaimics are related only to the lifting problem. The combined
unsteady acrodynamic problem is treated in section 3.4.11, and the drivation leads to the
following expression:

{CPk} = [a 1Y} + DoAY ) (3.19)

where the matrix [8A;] is an unsteady aerodynamic influence coefficient matrix relating
the time rates of change of flow incidence at control points { ¥ } to the aerodynamic
pressure cocfficients at the vortex panel area centroids. These influence coefficients are
indep2ndent of frequency (a unique and important characteristic of the low frequency
approximaticn*); they contain the effects of time-varying vorticity in the aircraft’s wake
and the effects of finite speeds of propagation of flow disturbances—both to a first-order
approximation. The frequency dependence appears only because the flow incidence
appears as a first-order derivative with respect to time: for harmonic, unsteady motion,
the complex pressure is given by

*® - * *
(e} } = (A, 1(¥})

k (3.1-10)
wherc * denotes a complex quantity and
3 .

is a complex aerodynamic influence coctticient matrix. This matrix is seen to be a linear
function of reduced frequency as a consequence of the harmonic variation of flow incidence.

(v} = {wg}el“t. (3.1-12)

The low frequency approximation is valid for arbitrary, slowly varying flow incidence; the
complex relations are introduced here only to demonstrate the relationship of the low

*See section 6.1.



frequency unsteady aerodynamic influence coefficients to the complex aerodynamic
influence coefficients encountered in solving finite frequency unsteady aerodynamic
problems.

Section 3.4.12 derives a leading edge correction which is necessary for the method of
solution used in the FLEXSTAB system to yield theoretically correct leading edge suction
on thin lifting bodies. Section 3 is completed by sections 3.4.14, 3.4.15, and 3.5 wherein
c:apirical data are introduced and the aerodynamic forces acting on an aircraft are derived
from the aerodynamic surfzce pressure distributions.

3.2 DERIVATION OF THE LINEAR AERODYNAMIZ THEORY
3.2.1 Nonlinear Aerodynamic Theory

The complete nonlinear aerodynamic theory consists of a flow equation in terms of an
unknown velocity potential, boundary corditions, and a relation governing the pressure
coefficient in terms of the unknown velocity potential.

3.2.1.1 Flow equation.—The flow equatio.. is given by equation (1-74) of ref-
erence 2-3 as

2
2 2 _ 3 ' 3 2 2 1 2
a Vo =55,00 -2,) + 520(¥e) - (Vo) 1+ 3¥e « V(o)

(.2-1)
- T - ) o %W%)

where a is the local speed of sound, viz.,

2 2 2 2
a = oae - (v - DI - 8,) + 2@e) - 3(Pea) 1, (3.2-2)

and & is the unsieady velocity potential from which the flow velocity is computed as

6 N 3.2-3)

In the analysis to follow the velocity potential ® is cxpressed as the sum of a
freestream component and a perturbation component. Letting the freestream component be
given by

¢e = Ux, (3.2-4)
the perturbed velocity potential is expressed as

¢ = Ulx + $) (3.2-5)



where ¢ is a perturbation velocity potential normalized with respect to the freestream
velocity.

3.2 1.2 Surface boundary condition. — The surface boundary condition has previously
been developed as equation (2.3-33) and, in terms of the perturbation velocity potential,
is expressed as follows:

g—ﬁ = - n, + n on G(X,Y,Z,t) = 0.(3.26)

3.2.1.3 Wake boundary condition. - The wake boundary condition requires that the
pressure be continuous across the wake surface, i.e.,

= on wake surface.
[Cp] 0 (3.27)

3.2.1.4 Far-field boundary condition. —The far-fie'd boundary condition requires that
perturbations to the freesteam propagate outward away from the aircraft surface and that
the disturbances either vanish or remain finite at indofinitely large distances from the
surface.

3.2 1.5 Pressure relation.— The pressure coefficient,

Cp = %’ (3.2-8)
is given in terms of the velocity potential by equation (1-64) cf reference 2-3 as
Sy = Y—éz{[l - Y—;‘%(ﬁ(qa -0+ %(%)2
- Lo 1YY Ly, G2

-

3.2.1.6 Statement of the aerodynamic problem.--Having the acrodynamic theory
expressed as above, the aerodynamic problem may be statﬁd as follows. Given the aero-
dynamic shape (G(X.Y.Z.t) = 0), the surface velocity (U, Vg. @ and §d/61), and the wake
location contained in the boundary conditions. find the perturbation velocity potential
o(X.Y.Z.t) satisfying the boundary conditions and the tlow equation. The perturbation,
velocity potential so determined represents a solution to the nroblem. The acrodynamic
surface pressure is computed by substituting the velocity potential into the pressure relation
and cvaluating the resulting expression at the aerodynamic surface. G(X.Y,Z,t) = 0.

3

22007 derodynamic coordinate svstems. The acrodynamic theory is developed using
only two of the fundamental axis systems defined in section 2.2, viz.. the Fluid Axis Syuiem
and the Reterence Axis System, and using local axis systems related to the Reference Axis
System by time-independent orthogonal transtormations.

3-9



3.2.1.8 Special notatic:i related to spatial coordinates. —The solution to the boundary
value problem posed by the acrodynamic theory, i.c., the velocity potential. equation (3.2-5),
is derived in the following for the instant of time t = t,,. This is the instant of time introduced
in section 2.2.2 when the Fluid and Referenc  Axis Systems are coincident as shown by
figure 2.2-2. At this instant of time the spatial coordinates of a point in the Fluid Axis System
are identical to the spatial coordinates of the same point in the Reference Axis System. In
expressing the velocity potential in the following, the variables x. y, z, therefore, are freely
interchanged with the variables X, Y, Z. Also, partial differentiation with respect to the
variables x, y, z is freely replaced by partial differentiation with respect to the variables X,
Y. Z because time is held fixed in these operations and the equations are entirely in terms of
Eulerian, i.e., spatial, coordinates.

To denote spatial variables of integration, several notational devices are used. Spatial
variables of integration are sometimes denoted by £, 1, {. At other times a prime in the
superscript position or a subscripted one is used to indicate that a spatial variable is a
variable of integration. Thus. the notation X', Y’, Z’ in section 3 denotes Reference Axis
System coordinates used as variables of integration. This notation should not be interpreted
as indicating coordinates in the Inertial Axis System, which never appears in section 3.

3.2.2 Asymptotic Expansion Method

The linear aerodynamic theory is derived by identifying in the surface boundary
condition, equation (3.2-6), small parameters governing the magnitude of the local flow
incidence, and by seeking an asymptotic solution to the nonlinear problem valid in the limit
as the small parameters approach zero, chapter 3 of reference 2-3. The perturb:tion velocity
potential is expanded in an asymptotic series involving powers of the small parameters. This
expansion is substituted into the nonlinear flow equation and boundary conditions of
section 3.2.1. Equating i~rrs equal in order of magnitude among the small parameters leads
to a sequence of simplifie. lincar boundary value problems. These problems individually
govern the flow associaie ) with each of the small parameters.

3.2.2.1 The asymploic scr'es.-- The asymptotic series is chosen as

= .o+ eee + .., + eee + E.b.. s e
¢ €1d. ‘1¢1 51534)13 + s (3.2-10)
where €; denotes any of the small parameters. The first-order potentials are found to be
governed %y tinear partial differential equations of the following form:

2M2 M2

2 - e it =
A ((‘bi)xx * (¢i)yy ¥ (¢i)zz U (¢i)xt U2(¢i)tt ¢

and they are required to satisfy linear boundary conditions imposed at mean locations of
the aircraft’s surface and its wake.

3.2.2.2 Low frequency approximation.-- A second asymptctic series is chosen assuming
that the unsteadiness of the boundary conditions reiated to the unsteady potentials is slowly
varying. The asymptotic expansion is taken to be a4 complex power series in terms of the
frequency of the unsteady surface motion, i.e.,

3-10
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where the quantity wj is the circular frequency of the ith perturbation potential appearing
in the first asymptotlc serics, equation (3.2-10). The reduced frequency defined in terms of
a unit reference length,

ws = wi/U,

is the small parameter in the second asymptotic series, and an asymptotic solution vahd in
the limit as G; approaches zero is sought for the unsteady flow problems. The zerot! and
first-order potentials contained in this series are found to be governed by steady flow
equations and boundary conditions. The flow equations and wake boundary conditions
governing the first-order potentials, however, are found to be inhomogeneous and require
the first-order potentials to be related to the surface boundary conditions in a somewhat
complicated manner; nevertheless, the first-order potentials are shown to be functions of
solutions to steady flow type problems in the general manner shown by section 4.5 of
reference 3-1.

3.2.3 Wing-Body Problem

The linear acrodynamic theory used in the FLEXSTAB system is derived from an
analysis of a simple configaration consisting of the wing-body combination shown by figure
3.2-1. Although the FLEXSTAB system is applicable to a configuration consisting of an

Stender body
\ ’
WS (X, Y,2Z,1)
Surface point e
VEIX, Y, 2,0
Thin body

FIGURE 3.2-1.-WING-BODY PROBLEM

arbitrarily arranged assembly of wings, nodics, nacelles, and tails, the acrodynamic theory is
readily developed around a simple wing-body combination using the surface boundary
condition in the compact form developed in section 2.3.3.3, viz.,



%%(X,Y,Z,t) = —ng(X,Y,2,8) + 00 (OT(,Y,20n,

» (2.3-73)
+ ﬁxw(t)W(x,Y,Z)nz on G(X¥,Y,Z,t) = 0.

The acrodynamic problem posed by the wing-body combination with the surfuce boundary
condition given by cquation (2.3-73) is referred to hereafter as the Wing-Body Problem.

The geometry of the Wing-Body Problem is described analytically relative to mean
locations of the wing and body as shown by figure 3.2-2. The wing, classified as a thin body,
is described relative to a planar mcan surface, while the body, classified as a slender body, is
described relative to 4 mean centerline and a mean cylindrical surface.

The aerodynamic theory developed around the geometry of the Wing-Body Probiem is
readily extended by the principle of superposition to the arbitrary configurations dealt with
by the FLEXSTAB system. As noted in section 3.2.2, the linear theory is derived by
identifying in the surface boundary condition, equation (2.3-73), small parameters
governing the magnitude of the local flow incidence at the surface. These parameters are
related, in part, to the surface geometry. Again, as noted in the introduction to the
aerodynamic theory, section 3.1, the gecometry of an arbitrary configuration in the
FLEXSTAB system is represented as an assembly of thin and slender bodies, each of which
is contained in the Wing-Body Problem. The surface boundary condition of the Wing-Body
Problem therefore contains all parameiers contained in multiple thin body-slender body

Slender body Mean surface
actual surface

Mean centerlZ

Thin body actual
surface

Thin body mean
surface

FIGURE 3.2-2-WING-BODY COMPONENT ARRANGEMENT

configurations. Since the theory being derived is linear, additional potentials €;¢; associated
with additional configuration components may be added to the theory by the principle of
superposition. The equations governing, the additional potentials will be identical in form to
equations contained in the Wing-Body Problem.
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3.2.4 Analytical Geometry of Wing-Body Problem

3.2.4.1 Aerodynamic local axis systems.—The geometries of thin and slender bodies are
described analytically in terms of local axis systems Xy, Y, Zy—one for each body —with
t" e subscript N indicating that the local axis system is used in the geometric description of
the Nth body. The origin of the N 1ocal axis system is located by the coordinates Xn(0O),
YN(O), Zy(O) in the Reference Axis System. The Xy axis is atways paraliel to the X axis of
the Reference Axis System, while the Yy and Zpy axes are oricnted with respect to the
Reference Axis System bv a positive rotation g about the Xy axis, figure 3.2-3. The
transformation from the keference Axis System to the local axis system of the Nth body
thercfore is given by

XN = X - XN (0)

N Y - YN(O)) cos By + (Z - ZN(O)) sin GN

Y
(3.2-11)

Z

N (Y-YN(O))sineN + (Z—ZN(O))cose

N

3.2.4.2 Analvtical geometry of thin bodies.—The geometry of a thin body is described
in terms of a local axis system (XN,YN,ZN) whose XNYN plane coincides with the mean
surface of the thin body, figure 3.2-4. The surface of the body is expressed as

G(XN,YN,ZN,t) = ZN(‘5)+TF(XN,YN) - S(t)H(XN,YN) = 0. (3212

Z YN

A

FIGURE 3.2-3.—AERODYN;4MIC LOCAL AXIS SYSTEM

Coordinate normal to the mean

Actual surface
wing surface
N
n
TF(XN,YN) + OH(XNI YN)
Y

XN

A\
~~'"‘“——\— Mean surface

-TF(XN. Y+ OHXN Yy Mean camber surface

FIGURE 3.2-4.—THIN BODY SECTION GEOMETRY
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where F(Xy,Yy) is an antisymmetric function describing the thickness shape and H(Xp,YN)
is a symmetric function describing the camber shape including clastic deformation and
control surface deflection.

The orders of magnitude assumed for quantities appearing in equation (3.2-12) are as
follows:

- F =
- oH _ aH =
H(XN,YN) = 0(1)’_3XN = 0(1),—?3 N<<C (3.2-13)

T<<C,B8<<C

where C is the reference length, e.g., the mean wing chord. The unit vector nermal to the
surface is found by applying the formula given by equatior ¢2.3-32):

> >

n = [ [ax (- TF+6H)]1 -[BY -TF+E)H)cos6N + sineN] 3

9 ,+ ) .
I - 8
[aY (-tF+AH)sinb

->
- cosb, 1 k} G214
N N

N

[ and

) t 2
% { i F+6H] [av (-TF+6H) ]+°"]
N “N

where the upper (lower) sign implies evaluation at the upper (lower) surface.

N

3.2.4.3 Analytical geometry of slender bodies. —The geometry of a slender body is
described in terms of a local axis system (X, Ypy,Z)p) Whose Xy axis coincides with the
mean centerline of the body, figure 3.2-5. The cross section of the actual body shape is
replacea by one which is circular, with the center of the circular section displaced from the
mean centerline by the camber shapes:

Y, = b(t)G(XM)

M
and (3.2-15)
Zy = c(t)I(Xy)
where
G(XM) = O(l),I(XM) = 0(1)

and (3.2-16)
b(t)<<ec, c(t)<<g.
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Actual body surtace

Center of saction

~-pls

7]

Noaixy)

Mean centerline

- Slender body carniber

FIGURE 3.2.5.-SLENOER BODY CROSS-SECTIGN GEOMETRY

For the theoretical development of this section, the slender body is infinitely long with
cross section

r(X.,) = P + aR(X )

H M (3.2-17)

where P is a constant,

R(XM) = 0(1)

and (3.2-18)
a<<

(92}

The effects of slender body truncation in the form of a pointed nose and tail are added in a
manner similar to that described by reference 1-1, wherein the effects of slender body
trun.ation are patched into the results of the present analysis.

The surface of the slender body is expressed as

2
Gy YyaZyys ) - ~P-aR(Ky) + {[YM-bmc(xM)]

2k (3.2-19

and the unit vector normal to the surtace is found as



> > > >

n = {—[H% + b%g—cosu + cg—I-Sinp] i ® cospj + sinp k}
M M Xy (3.2-20)
x{ l-l[a drR_, bﬁ cosy + cai sinp }?+-u}.
_ 2 dXH axu BXH

3.2.5 Asymptotic Expansion of the Wing-Body Problem

When the geometric parameters a, b, ¢, 0 and 7 are allowed to vanish, the configuration
has the limiting shape shown by figure 3.2-6, i.e., it reduces to mean surfaces which are

FIGURE 3.2 ..—LIMITING FORM OF CONFIGURATION

uncambered and aligned with the X-axis. Letting the time-dependent geometr.c parameters
be expressed as

c(t) C)‘c(t)’

and . (3.2-21)
e(t) C-)Xe(t).

H

where Ap(t), A (t) and A,(1) and their derivatives have the order of magnitude unity, the
parametess which give rise to disturbances to the freestream are as follows:

W,V,T,0,a,c,b (3.2:20)
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When these parameters are all set to zzro, the configuraiion reduces to the limiting
configuration, and flow incidence ai the sucface vanishes everywhere.

325.1

function of the perturbation parameters listed by equation (3

expansion is chosen >0 be the following:

~ ~

® =U[ x+wd,7vp+1d-+0

+(second and higher ordar

drtadstbhet

~

-

ympiotic series.—The velocity potential, equation (3.2-5), is a parametric

2-22). and its asymptotic

cP7?

terms)].

This expression is substituted into the flow equation and the boundary conditions.

3.2.5.2 Expansion of the flow equation. —Substituting the velocity potential given by

22

-

equation (3

3) into the exact flow equation, equations (3.2-1) and (3.2-2), and collectiag

like-ordered terms in »owers of the small parameters, leads to the following:

~ 2 ZM:
wiB o1, *o1  +h -~g—¢

yy "lzz Txt™

2

M2
¢zxx*¢z

+ [B - %2

yv ®222

xt

2
+T0B b3 tea  *é3 ] +

¢3yy+ 322]

2 apn2
oM
+ _———¢
¢"xx+¢..yy LA PRRS I

Xt

+E[8

44

2
+a[B ¢5XX+¢ 5yy YSZZ]+

2

M2
¢bxx+¢s

*B[8 yy+¢szz_ T ®oxt”

-~ 2
+e[B §7,t07, ¥

oL

r(terms of second z:wd higher

2
%’¢’t9 ¥

M2
gré2e: ¥

Mz
ARTL

M2

. 4
Te%6¢]

order)

(3.2-24)

n
[

By definition, the small parameters of the problem are independent of one another
(c.g.. the magnitude of W is not related to the magnitudes of the other parameters). Each
of the terms in brackets of equation (3.2-24) therefore must vanish separately. Thus. for the
exact nonlincar flow equation (3.2-1) to be satistied by the velocity potential. equation
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{3.2-23), the disturbance potentials L2 through ¢; must satisfy at least the following linear,
p.amal differential equations:

~ 2 M2

w: 8 ¢‘xx+¢'yy b1, T 1y L_'r¢‘tt =0
v: B2 + 247 —z¢ =0
ViB b2 tea e, g 2 TR 2y T
2
T: B d"xx*’q”va’zz =0
~ 2 + _2M? M 0
8: B duyn A T A —ﬁ’"tt
a: 8 + + = 0
¢s Cbsyy bs,, (3.2:25)
— . . M2 u? -
: 8 ¢, ¢‘yy Se,, T Poxt U6ty - O
i B by, +er. +er 2y Mite =
) Txx lyy 7zz7 U *7xt GZY7

There are, of course, additional partial differential equations contained in ihe higher crdered
terms of equation (3.2-24). These equations are ignored i the present analysis and are, in
general, not satisfied by the solution to the aerodynamic problem contained in the
FLEXSTAB system; only the first-order flow ¢quations, equations (3.2-25), are considered.
The FLEXSTAB system is therefore Lased on 2 first-order approximation which is Lnear as
a -onsequence of the linearity of equatious (3.2-25).

2.3.3 Expansion of the thin body surface boundary condition.—-To express the
surfage boundary condition in terms of small parameters for the thin body (viz., w, v T,
and §) the expanded potential, equation (3.2-23), is substituted into equation (2.3-70) and
evaluated at the wing surface. Noting that for spatial differentiation the variables, XY, Z
and x.y.z, are interchangeable, these operations lcad to the following form for the boundary
condition:



(-1 =5— et
axN 3] BXN

*be tchy tocn) * (¥sind ~ToL cost

N aYN N

za. OH - Towg, +voy +
+e1:eaTNco°9 ) § vkv(t)V+W¢1y V¢2y T¢3y

+6¢~y+a¢sy*b¢sy+c¢7y+"’] (3.2-26)

+(-cosG -1'5— —51ino -exegg 51n6 )

N

x[-wlw(t)ﬁ+w¢ 1,tvé2 t1é 3,400,

~

+a¢ sz+b¢sz+c¢ 7,4 *] =

The values of the potentials at the actual wing surface can be expressed in terms of a
Taylor series expansion about the mean wing surface (fig. 3.2-4). Taking a typical
expansion, that for ¢Iy’ the value of ‘3’Iy at the actual wing urface is given by

& 9t
‘y] surface= ¢; (ZI =%0) + ( ) ('7 =+2)[2TF(X,. Y,,)
Ln, it

y
+OAgH(X,,Y, )] + (1?,82,18, etc.)

where 1 is 2 normal coordinate positive upward from the mean wing surface, figure (3.2-4).
The plus and minus signs denote upper and lower surface. respectively.

Inserting expansions like that of equation (3.2-27) into equation (3.2-26) and equating

orders of magnituides gives the boundary conditions to be satisfied on the mean surface of
the wing. For the various parameters the tirst-order boundary conditions are as follows:
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iy 91

w: I Aw(t)coseuﬂ (a)

A. a¢2 . . -

v: 3n - Xv(t)51n6NV (b)

c:  d0s. of €
an '}

N

- 9. oH

0: =\, mo— (a)
on (3] 3XN (3.2:28)

a: 3¢s - 0 (e)
an

1’;: ade - 0 (f)
on

. %7 _

c: o 0 (g)

where the normal derivative 3/dn is now along the normal to the mean scrface:

a—=a—-cose -3 in@
an 3z N T 3y PN

3.2.5.4 Expansion of the wake boundary condition.—The wake houndary condition
requires that the pressure coefficient be continuous across the wake surface. Re:alling the
pressure coefiicient, equation (3.2-9), and introducing the expanded potential, it follows
that

= - 1D¢1r. v 2¢_2- FY _.3@3 AD¢'4
Cp=-2lge ¥ *gpe Ve Tt

(3.2-29)

a¢s - D¢G - D—¢7 * e
ta get t b gt oo teee ]

where D/Dt = 3/t + U 3/0x. It remains to evaluate the pressure coefficient on the actual
wake surface by expanding the potentials in equation (3.2-29) in terms of a Taylor series
expansion about a suitable defining surface whose position is known a priori.
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As noted in the discussion on kinematics, the mean wake surface may be located
relative to the paths of the trailing edges of lifting surfaces of a configuration. Consider the
cylindriz 4t surface which is a downstream continuation of the mean wing surfa-e and which
is parallel with the X-axis, figure 3.2-7. This surface is termed the defining surface. The
coordinates of points on the mean surface relative to correspoading points on the defining

r 4
Defining wake surface
\‘/Acmal wake surface
AZp- —_— Y
=<\
— =AY Mean wake surface

FIGURE 3.2-7.—WAKE SURFACE

surface, AX, AZp, AYp, are found by integrating the unsteady veiocities Uw Ay(t) and
UM, (D) to find the following:

Az, = -r Uwiw(t)dT

X
t-g

=Uw( -Xw(t) + Xw(t-x/U)]
(3.2-30)

Ay, =-[ T gva (r)dn
4 v
t-5

}

=Uv [-Xv(t) + Xv(t-x/U)2

where A (t) = a-):w/at and A(t) = 9Av/at. The mean wake surface is displaced in the
Y-direction as

- X
= T~ -
AX (U-Ul(t U) (3.2-31)

t
where U= U/X f U(r)17 is the avernge forward velocity.
t-U/X
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The actual wake surface is deformed about the mean wake surface. The displacement
of a point on the actual wake surface from the corresponding point on the mean wake
surface is denoted as AY, AZ. The distances AY and AZ are functions >f the small
pararreters and may be expressed as

AY = wAY, + vAY, + tAY3; + 6A4Y, t+ aA¥Ys + bAYe + cAY, +

+ (second and higher order terms)

~ ~ ~ ~ ~ (3.2‘32)
AZ = uAZ; + vAZ; + TAZ3 + OAZ, + alAZls + cAZg + bAZ, +

+ (second and higher order terms)

A second Taylor series expansion in terms of the spatial displacements &Y,AZ is requirsd to
expres. the value of the pressure coefficient on the mcan wake surface in terms of its value
on the defining wake surface.

Assuming AX to be small, the sequence of Taylor series expansions gives rise to second
and higb .r order terms in the expansion of the pressure coefficicnt. Thus. the pressure
coeffic.ent on the defining surface is a first-order approximation to the pressure coefficient
at corresponding points of the actual wake surface. Imposing the requirement that the
presare coefficient be continuous across the actual wake surface to ail orders of magnitude,
i.e., {Cp 1= 0, results in the following boundary conditions to be applied on the defining
surface of the wake:

~. Doy -

v [ﬁ? 1=0 (a)

\:: [g%zl = 0 (b)
. 1993y _

T [-3; l = 0 (C)
A Déduqy _

Q [ﬁ 1 =0 (a)

(3.2-33)
9b ¢ i

a: [343‘] =y (e)
b: (2267 = o (£)
~ D

c: [%711 =0 (g)



3.2.5.5 Expansion of the slender body surface boundary condition.—Substituting the
expression for the unit vector normal to the surface of the slender body, equation (3.2-20),
into the surface boundary condition, equation (2.3-70), and cvaluating at the surface of the

body leads to the following expression:

dR G ~, 91 . * ~
-(aa—x; + bxba—-x; cosp + cxcm s:mu)(1+w¢1x v+

+ l¢3x + e¢~x + a\bsx + b¢sx + c¢1x + 0..) +

~

+ cosu(-cl V+;¢, + voa. t Adpa, t 04y +
v y y y Y (3239

~

+ a¢ps_ + bég

y y + c¢1y + ¢e0) + sin (wlwW

”~ ~ ~

Wy, tvhy ¢ M”z * 86y, t+ ads, ¢ btbsz
+ c¢7z + .oo) = 0.
The nondimensional perturbation velocity potentials are evaluated at a typical surface point A

and this value can be expressed in terms of a Taylor series expansion about the corresponding
point A’ on the mean surface (fig. 3.2-8).

Zy

A Actual surface

Mean surface

- Yy

FIGURE 3.2-8.—CORRESPONDING POINTS ON THE ACTUAL
AND MEAN 3SURFACES OF A SLENDER BODY

The nondimensional perturbation velocity potential at point A is therefore given by the
expansion about point A’ as follows:



¢ (A)

6(A") + 3¢§§M’tbxb<t)e<xu) + aR(X,) cos u]
¢ B A (k) + aR(X,) sin u)
3ZM M M
(3.2-35)
oe . 36(AC)D 36 (A") A
$(AT) + 3YM bXb(t)G(XM) + —TZ—M' clc(t)I(XM)

éi' - e e 8
+ an\A )aR(XM) + .

Substituting equation (3.2-35) into equation (3.2-34) and equating terms of like order in the
small parameters leads to the following system of first-order boundary conditions to be
satisfied on the mean surface:

w: 3¢,
an

- xw(t)W(x,Y,Z) sin p

g: 9¢2 - _ v
v: gk lv(t)V(X,Y,Z) cos

T:?)ﬂ:o

on

(3.2-36)

@>

ai.":ﬂ
an

a: _?115 - dRrR(X,,)
an dX

o

. _ais _ G(X,,)
3n Xb(t)-wM cCOS U

>

)

. 367 _ AI(X :
c: = .\c(t)—aY——M sin p

an M

These are the first-order boundary conditions to be satisiied on the mean surface of the
slender body, and n is the outward normal to the mean surface such that the normal
derivatives appearing in equation (3.2-36) have the following form:

- = -‘a—— cosL + —a—— sinp 3.2-37
n BYM BZM (3.2-37)
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3.2.5.6 Linear First-Order Aerodynamic Theory for the Wing-Body Problem

The first-order aecrodynamic theory for the case when th- time-varying quantities
AW, A1), Ag(t), Ap(t), and A (t) are of order unity is now completely formu!.ted. The
solution is given by the perturbation potential

~ ~ ~

$ =why + vdy + Tha -+ 0¢y + ads + bog + céy (3.2-38)

and is a first-order approximation to the nonlinear theory stated in section 3.2.1. The
velocity potentials ¢; (i = 1, 2, 4, 6, 7) must satisfy the linear unsteady flow 2quation

2 2
L 0 M M

'\2
(S I t o, LIS =
1X¥ 1yy izz = U Pixt T Uittt O (3-2:39)

while the velocity potentials ¢; (i = 3, 5) must satisfy the linear steady flow equation

2 . + . = 240
8 ¢1xx * ¢iyy ¢1zz 0 (3.240)
Letting Sy and SB denote, respectively, the mean surfaces of the thin wing #nd slender
body of the Wing-Body Problem and letting the flow incidence from each potential be

denoted as

- 3¢ .
\P_' - -€~ '—l,
* 1 3n (3.241)
the surface and w=ke boundary conditions are summarized as follows:
w o ¥, =-wlw(t) cos GN W on Sw
='W)‘w(t) sin pu W on Sg (a)
Doiy -
o) = 0 on W
v ot ¥, = vAv(t) sin By v on S
~ _ (3.242)
= - V)‘v(t) cospy V on SB (b)
D¢o -
lD-t ] = 0 orn W
_ = _9F
T ¥y = + Y on SW
N
= 0 on SB (¢)
[.mgxu = 0 on W
A _ ~ BH
3 ¥y, = = exe(t)syg on Sw
= 0 on SB (4)
D¢h - ny
[Dt n - 0 on w
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W
- a%%; on Sg (e)

[¢5x] = 0 on W

1; : Ye = 0 on Sw
s = - b)‘b(t)g?(_M- cos U on S}3 (£)

[g.%i] =0 on W

:; : v, = 0 on Sw
= - ;kc(t)giy sin p on SB (g)

11%%1] =0 on W

The entire aerodynamic theory for the Wing-Body Problem is expressed in the
following compact form:

flow equations,

B2(o.)._ *+ (60 + (6. - Moy My, = o
i'xx i'yy i'zz U "Pi'%t — U7 7i'tt ’
surface boundary conditions,
3¢i
€ gn = - ¥ (XY,Z,0) on Sy * Sy (3.243)

A A A ' A} A
where € =W, €)=V, €357, €4 = 0, es=a, eg=b,e7=c
and wake boundary conditions,

[¢it * U¢ixu =0 onW

where \l'i is given by equations (3.2-42) and all derivatives with respect to time« vanish for

the thickness problems i =3 and 5.
3.2.6 Low Frequency Approximation
The unsteady flow problems posed by equations (3.2-43) are greatly simplified by the
low frequency approximation previously referred to in section 3.2.2. Equations (3.2-43)

yield a valid approximation when the unsteady flow inzidence imposed by the surface
boundary conditions has the characteristics
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c . _
and (3.2-44)
cy2 3?2 _
If the unsteadiness is simple harmonic, i.e., if
(¥, 0X,Y,2,1) = R(\vi*(x,‘z,z,a‘i)el‘”it}, (3.245)

then equations (3.2-44) imply that the reduced frequency,

K= —167“’1 ’ (3.246)
may be of order unity. In this section

- 2

ws = T (3.247)

is taken to be a small parameter, and an asymptotic solution to the unsteady flow problems,
equations (3.2-43), valid in the limit as w; approaches zero, is sought.

3.2.6.1 Simple harinonic time dependence.— Assuming simple harmonic time depen-
dence as in equation (3.2-4%), the unsteady flow problems become as follows:

% % * %

B2g. 4 4.+ d. = 2iM2B, o._+ M2B.? 9. =0
ixx iyy izz i Tix i i
205
P - ‘Yi(X,Y,Z) on SW + SB (3.2-48)
;T ® % - J
[ fwgo* + 0. 1 -0 onW

where @;* is th > compiex potential such that

85 (X,Y,Z,t) = R{6,%(X,Y,Z,8,)e¥i"} (3.249)
3.26.2 Asymptotic series in frequency.—The reduced frequency is identified as a smeil
parameter in the surface boundary condition by noting that the local, complex flow

incidence can be expanded in a complex power serices as follows:

v oigLy, (Y
s 5 ;¥ (3.2-50)

+ (terms of higher order in i w,)



Corresponding to this expansion, the asymptotic expansion is chosen as follows:

+ i&s‘.¢.(l)

(o)
i ivi

*
¢ i = ¢ 2
+ (terms of higher orde:r in i Gi) (3.2-51)
Substituting the expansions, equations (3.2-5C) and (3.2-51), into the equations governing
unsteady flow, i.e., equations (3.2-48), and equating terms of like order in it;, leads to the
following sequence of simplified flow problems governing the zerotM and first-order

potentials:
zeroth order
flow equations, 32¢(°) \ ¢(0) \ ¢(o) _
ixx iyy izz
and boundary conditions, (3.2-52)
(o)
a¢ by - (0 ) fag
-5—51 = ~‘Pi on Sw + S
(0) _ =
[ ¢ ix ] =0 o~ W
first order

flow equations,

2, (1) (1) (1) _ 2, (0)
B inx * cbiyy P iz T 2M ¢ix
and boundarv conditions, (2.2-53)
' (1)
3¢ . - (1)

[d)g()ll = -icbi(O)] on W

3.2.6.3 First-order approximation to unsteady flow.—The first-order approximation i~
unsteady flow is obtained by truncating the asymptotic series as follows:

% (o0 — (1)
Oy~ 07 F lugdg (3.2-54)

This expression yields a valid approximation when the frequency of the {ocal flow ircidence
is so small that terms of higher order in ic; may be neglected by comparison with the zeroth
and first-order terms. A direct evaluation of the required smallness of the reduced frequency
for equation (3.2-54) to yield a valid approximation is deferred to section 3.2.8, but some
insight into the nature of the approximation is gained from an examination of the first-order
problems posad by equations (3.2-53)

An interesting physical interpretation of the first-order problems stems from the wake

boundary conditions. The implication of this boundary condition foliows by noting that
[¢i(0m is independent of the X-coordinate, i.e., the distance downstream, bccausc[[gi‘((oil'= 0
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on W in the zerotM-order problem. It may also ve roted that I[qbi(o)]] on Wis equal to the
strength of the bound vorticity on the surface producing the vortex wake. (See equation
(7-38) of reference 2-3.) Recalling that

0. ® (¢§o)+ iﬁiq)gl))e.‘wit

1

it follows that to first order in uf;l

L1285y = uts(®)

and the terms l[q)i (0)“ appearing in the wake boundary conditions of the first-order problems
represeni the rate ot ¢'.. nge of bound vorticity in the zerotorder problems. From the
first-order wake boundary conditions, i.e.,

[¢i)((l)]l = -[¢(i0)l on W,

it follows that there must be a transverse component of vorticity in the wake whose strength
is independent of the X-coordinate and is equal to the time rate of change of bound
vorticity. In terms of time history the wake has a “memory” limited to the instantaneous
flow incidence and time rate of change of flow incidence on the surface. The wake extends
to infinity with a transverse component of vorticity which depends only on the time rate of
change of surface flow incidence at the instant of time under cousideration; thus, the wake
vorticity strength varies linearly in the X-direction.

For flows with a supersonic freestream the effect of the limited memcry of the wake is
not severr sincc only a small portion of the wake close to a configuration can influence the
flow over the configuration. For subsonic flows, however, the situation is quite different
because the entire wake influences the flow about the configuration. The influence of
distant portions of the wake is greatest for very large aspect ratios, decreasing with
decreasing aspect ratio to the slender body theory limit wherein the wake has no fi.st-order
influence. The validity of the asymptotic expansion Jor low frequency motions must depend
in some way on the aspect ratio. The question is considered further in section 3.2.8.

3.2.6.4 Derivation of the form of the solution to the first order prol:lems.—The zerolh
and first-order problems posed by equations (3.2-52) and (3.2-53) must be solved sequzn-
tially because the first-order equations contain inhomogeneous terms v hich are functions of
the solutions to the zerotl-order problenis. The zeroth.ord. - prohiems a-~ =een to be simply
the steady flow prob'ms obtained bg assuming the iocal flow incidence ¢ surfuce to be
steady with the solution given by ¢i( ). The homogencous forn, of the first-order flow
equation is seen to be identical to the steady flow equation. Therefore, on letting integrals
of this :quation be denoted s @y, the solutions to the zerot and first-crder problems are
denoted as follows:

go)

-

o = ¢’H(X,ysz§ -Y

(?))
b (3.2-55)
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and

1
¢§ ) = dyu(x,y,2; -Y( )) + ¢ (')(¢§°))

(3.2-56)

where $. (')(¢ (O)\ Jenotes a particular integral which is a function of the solution to the
zemth-order p(oblem. '

A particular integral to the inhom~_ neous flow equztion of the {irst-order problem is
given by equation (4.5.1b) of reference 3-] as follows:

. (1) M?

?ip = szdﬁﬁ(x,y,z, -y (J))
This particular inteyral, when combined with the homogeneous solution and substituted
into the boundary conditions of the firs.-ordel problem, leads to

3.2.5T7

¢ 2
5T H(x,y,z, -.i )) + g 2 S —?SO))
_ (1)
= - ‘l'i on Sw + SE
and (3.2-58)
3y 1) (o)
[ﬁ—(x,y,z, —‘l'. )1 - Loy Goyyszs -¥.7 D)
_ Mz 9%
+ %zldﬁH(x,y,z; (0))] + ’sz[a r{(r,y,z, -‘PSO))]

= -[¢,{x z; —‘P(O))] on W
gt 3Ys25 i

In the first of equations (3.2-58), the {ir:t term cancels the term on the right, leaving
the unerlined term. The first tern: in th. second of equation (3.2-58) vanishes hecause of
the cssuned (orm of ¢y which was used in the zerotorder piablem. The second terr
cancels the term on the ri ght-hand side, leaviug the underlined terms. Thus, to the articular
integral given hy equation {3.2-37) must be a<ded additional homogeaeous terms which
czacel the underlined termis appearing in equations (3.2-58).

The additional homogeneous terin which will satisfy the surface boundary conditions is
given by reference 3-1 and the f st-order solution given by reference 3-1 is as follows:

1 < b}
¢§ ) - ¢y (x>y523 -Wil)) + %zix¢ﬂ(x,y,z; -W§° )
[ » W B |

first ho.nogereous term particular integral (3.2-59)
(0) '
- q,H(x.y,z; -x¥ s )]

\ -

second homog. eous term
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The first homoageneous term provides the solution satisfying the first-order su. 1ce bouncury
condition. The second cancels the flow incidence induced by the particular intcgral.
Equation (3.2-59) corresponds to the result presented as equation (4.5.1b) of reference 3-1:
and, as pointed out in reference 3-1. this is a complete solution in the case of supersonic flow
about a wing having no subsonic trailing edges, i.e., when the wake bortiidary condition is
eliminated from the problem. Equation (3.2-59) is not a solution i subsonic flow nor in the
general case of supersonic flow because it fails to satisfy the wake boundary conditions of
the first order problems.

A complete solution to the first-order problems satisfying botn the surface and the
wake boundary conditions for arbitrary configuration shapes in subsonic and supersonic
flow is derived in the following. This derivation proceds from a formulation of the
vasteady flow problems expressed in terms of the acceleration potential defined as

= D¢
Q= 5¢

which. to first onler, is given by the linear approximation
Q = ¢t + Ud (3.2-60)

In terms of the acceleration potential the unsteady flow probizms are shown by reference
3-2 to be as follows:

flow cquations:

2 — - =
B i ex ¥ Qiyy PR m T Ry 0T Mg 7 O
where
g2 = 1-M?
(3.2-61)
boundary conditions;
ﬂi = Qi(X,Y,Z,t) on Sw + SB
ana
[Q{] =0 on W
where £2; is required to satisfy the integral equation
g e o e ) Y X
ELONY,T,1) 2 - f-m 2:(8,Y,2Z,t-53dg (326D

for W; specified on Sy Sg.

The prot.em formulation consisting of equations {3.2-60) through (3.2-62) has been
introduced to obtain a wake boundury condition which is free of fisst-order time



derivatives—the source of the inhomoge:.cous term appearing in the wake boundary
condition of equations (3.2-53). The first-order time derivative in the flow equation is
eliminated by introducing the following transformation of coordinates:

x° = L

B

: _ M
t' = B—Ux + Bt (3.2-63)

Q'i(x',y,z,t') = Qi(x,y,z,t)

so that equations {3.2-6. , become

9’:'Lx'x' * Q':'Lyy * Q'izz -g; Q’i’l:"l:' =0
Q7 = Q7 (X]Y,Z,t7) on S + S7 (3.2:64)
[e”;1 =0 on W”
Assuming simple harmonic time dependence. i.e.. assuming
o; = af o™it (3.265)

1;x iw:x 1@;x
and multiplying by e “i sothatd(e ' ¢*) =%‘* e U dx, it follows on integration that

¥

fe S

_ Ll -iw.x 3 [ X * iw.g

dg.
(3.2-(9)

Under the transformation of coordinates, equation (3.2-63), the potential and complex flow
incidence become as follows:

Q°. = g-telwit /B
i i
and
4 B -iuiBx”d [T Sw_iwiE /3., -
¥7; = ¢ 3n f_ je dg
(3.2AT)
where
NTF L oL —ip.MIxT/8
s l = Q 5_ e 1 (32-68)
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is 2 modified potential corresponding to that given by equation (2.7.7) of reference 3-1. In
thes terms equations (3.2-64) become

Y ~k R @2M2 % = O
Qix'x'+ﬂiyy+nizz+1§ni
- % R S (3.2-69)
Q i - i(X,Y,Z) on Sw + SB
%
[ﬁ’i] =0 on W

ar ! on returning tn the original coordir ates, i.e., by substituting X’ = X/B, the unsteady
1 w problcm becomes as follows:

fle v equatior,

28t o+ &b+ ar_ o+ Mot 0
[ 3] - —z-(‘). 3 =
IXX 1yy 1zz B 11 (3.2-70)
boundary conditions, .
Qi_ = Q.(X,Y,.) on Sw + SB
=3
[Qil =0 onW
where S_li*(.‘(,Y,Z) is required to satisfy
\y* - _ 1 e 1w Xa fx ﬁ‘-'-‘ iw-t‘;/Bsz (3.2-711)
i U an J_w s © -

on Sy + Sg.
This unsteady flow problem, equations (3.2-70), is physically identical to that poscd by
equations (3.2-48) and yields an identical solution in terms of the complex velocity potential

given by the foliowing:

1 -iwsx| S* iw.g
$. = e 1 j mﬂie 1 €, (3.2-72)

when the integrand of equation (3.2-71) is transformed using equation (3.2-68). i.c.,

5% iwig/B8% _ & -ipiM2E£/B? ini£/82
e = Qe e 2 (3.2-73)



Thus, i7 the complex flow incidence appearing in equation (3.2-71) is identical to that
appearing in equations (3.2-48), the twoe problems vield identical complex velocity
potentials.

An asymptotic solution to the unsteady flow problem, equations (3.2-70) and (3.2-71),

is assumed as follows when the complex flow incidence is expressed n the asymptotic
series shown by equation ¢3.2-50):

a = al) i3.gtt)
1 11

-

+ (terms of higher order
in iw;) (3.2-74)

Substituting equations (3.2-50) and (3.2-74) into equations (3.2-70), and equating terms of
like order in i<, leads to the following sequznce of simplified flow problems:

zero'M orde-
flow equations,

g2no) 4 glo) , glo) _
ixx ivy izz

anu boundary conditions, (3.2-75)

§§°) = §§_°)(X,Y,Z) on S, *+ S.

first order:

flow equations,

g2a¢l) gl 4 gll) o g
ixx iyy izz
and bound.ry conditions, (3.2-76)
—(l) - —(l) s
Qi = Qi (X,Y,2) on Sw + SB

[§§')] =0 onW

Both the zerot! and first-order problems are of the steady flow type and the surface
bouncary conditions are related to the complex flow incidence by expanding cquation
(3.2-71),i.e.,
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X
(o) = (1) Lo, - L= veoy 9] a(0)
1 iw.E
1mi!l§ ) teee) (14 SJZ' +eee)dE
Equating terms f like order in iw; yields the following:
(o) x (o)
- 13 .
L T I T I-.. a; <k
1y _ 100 [x L) 5 [x (0 !
¥, --,J[ﬁ- I_‘: Q.dg + == ﬁl?dg (3.2-78)
s |x (o)
-a— _mxﬂidﬁ]

Recalling equation (2.2-60), the complex velocity ana acceleration potentials are related as
i

% ) %

B = tugby * Ubyy (3.279)
where ¢, * is the modified complex velocity potential

% * _ip.M2 2

5 = pe tuyMx/B (3.2-80)

1

Substituting the asyn:ototic series into equation (3.2-79), and equating terms of like order in
iw;, leads to

_(e) _(c)
g:i. = U¢ix
(3.2-81)
=(1)_ ., =(0) (1)
CHEERHE ISR R TSR

Substituting these results into cquations (3.2-78) and carrying out the indicated integrations,
leads to the following:

-(0)
glod_ 3ii
b an
13 2-32)
Y 1
“TBT 7 9n on BZ j-» 2¥n >



Applying the procedures leading from equation (3.2-71) to equation (3.2-82) to the
expression for the complex velocity potential, i.e.,

{ms X s = 2
¢; (x,y¥,2) = %e —lwiXx I 5131“15/3 dg, (3.2-83)
leads to
(0) _ = (o)
S (3.2-84)
and
1 2 - (1 X _
¢§ ) %r x¢§°) + ¢§ ) T J_m ¢_§°)d€ (3.2-85)

Equations (3.2-82) through (3.2-85) are now combin>d to find

) 3¢(o)
o i (3.2-86)
‘rl R on SW + SB
(1 2 1 X (3.2'87)
g¢) . P'Bir}‘ (o) ‘l’§ ) %-r [_w‘l'?)di on S, - Sg
() _ M (o) , () ifx (0) (3.2-88)
S L T L T

Equations (3.2-81), (3.2-84), and (3.2-86) show that the zero'Morder problem in terms of the
acceleration potential stated by equations (3.2-75) and the first of equations (3.2-78) is
identical to the original zeroth-order problem in terms of the velocity potential, equation
(3.2-52). Equation (3.2-.8_82 ¥ields the desired solution to the first-order problem given by
equation (3.2-53) wher ¢; 1) is a solution to the homogeneous form of the flow problem

with the surface boundary conditions given by equation (3.2-87).

3.2.6.5 Solution to the first order in frequency problem.—Recalling the symbolic
notation introduced by equation (3.2-553), the solution to the first-order problem, equation
(3.2-88), is expressed as follows:

,(0)

2
¢§l) =Y (0)) - <1>I’I(>(,y,z;-x\x/i

E—[xcpH(x,y,z;-‘i’i

\ J

g w

) 1+

V)

particular integral second homcgeneous term



+ ¢H (X,Y:Z;-“’]S_‘B

“ v
first homogeneous term
(3.2-39
x y 3¢9
- [I th(x,y,z;-!§°))d£—¢H(x,y,z;I 1 4e)]
g2 g - -o3n
N > y)

third homogeneous term

Differentiating with respect to the norma! to the mean surfaces and evaluating at the mean
surface leads directly to

)
3 ()
o - - Y on Sy + Sg

Thus, the solution satisfies the surface boundary conditions of the first-order problems posed
Iy equations (3.2-53). The third homogeneous term, which appears in equation (3.2-89) but
not in the solution given previously by equation (3.2-59), satisfies the fi st-order wake
boundary condition.

th

The complete solutions are obtained by combining the zero'" and first-order solu-

tions. viz.,

(o), .- (Y
¢i - ¢’i + lwi¢i
( o M2
= 0 00y,23-¥,°0) v 140 E? [x (x,y,25-¢5°))

(3.290)

X
- ¢j.(x,y,-;—xw§°))] - 1‘,' j ¢ H(E; y,z;-\i’l.(O))dg’

.

. (o)
- 8 (K, V2] e dg)l + (x,y,25-¥0 )]
s XaYsls )Bn £). ¢H KyYsZ3- i .

3.2.6.6 Arbitrary, slowly varving. time dependence.  The simple harmonic motion
restriction is removed, page 46 of reference 3-1, by noting that the complex power series
expansion of the flow incidence, equation (3.2-50). is equivalent to a Taylor series expansion
of tie time-dependent flow incidence about the present instant of time. Then to first order
in frequency

- x Y )
v, o= (989 4 1.0y plugt
1 1 1



and

1 ¢ (o) jw.t
U\yi - 1 i‘yl e
®* (o) L= (1)
\Pi = ‘l’i + 1mi‘Pi

Substituting these approximations into equation (3.2-90) leads to the following form for
the solution:

M2 .
¢i = ¢H(X9Y:Z;‘\Yi) + Ez_ [xd)H(x,y,z;-‘l’i/U)
> 1 s 291
= 0y (%,y,25-x¥, /)] - E;[ JX 0y E,y,25-¥;/UNGE (3.291)
X 3¢H .
= ¢u<x,y,z; - (E,y,z;—‘{‘i/U)dg)]
sk - an

The pressure coetficient Cp induced by tiwe flow incidence is the end result required by
the FLEXSTAB system and is found for harmonic motion as

% U in.t
= - . - 92
Cpi Qel(q’ix + 1“i_¢i) e 1 (3.292)

while for arbitrary, slowly varying time dependence

S (3.2:93)
Cpg = =285 (Foi¢ * 05,0

3.2.7 Summary of the Linear Wing-Body Problem

The linearized Wing-Body Probicm is solved by solving a system of linear boundary value
problems all of the same form. In cach boundary value problem of the system the unknown is
a function,

by 7 dylayazi-¥y), (3.2-55)

which is required to satisfy the following equations: the linear partial differential equation
given by

2 \ - .
B 00n ey ¥ o)y, ¥ (o), = 03 (3.2:94)

o



the following mean surface and wake boundary conditions:

3¢H )

W--YH onSw+S

B’

(3.2-95)
[(¢H)x] = 0 on W

and the far field boundary condition requiring that ¢y vanish or be finite on a surface Z ata
large distance from the aircraft. The system of boundary value problems is generated by
changing the value of fiow incidence distribution, ¥, specified on the mean surfaces Sy, + Sg.

The change is made by setting ¥ equal to each one of the following flow incidence
distributions:

‘Pi, ‘Pi/U, x‘l’i/U

and
X 3¢H .
T (S,y,z;-‘{’i/U)dE
wherein
¥, =-wW(X,Y,Z)Aw(t)cosGN on Sw
~_ (a)
=-wW(X,Y,Z)X_(t)sinu on S
w B
¥, = vV(X,Y,Z)Av(t)sinON on Sy
~_ (b)
= -vV(X,Y,Z)Av(t)cosu on SB
_aF .3.242)
Wy, = +Ta—)-('(x,Y,Z) on Sw
(c)
= 0 on SB
- ah
¥y = -O)\O(t)ﬁN X,Y,2) or €,
)
= 0 on SB
Y¢ = O on Sw
(.)
= —aQ.—(X,Y,Z) on §
G(’.M B
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Ye = O on S

W
n 26 (£)
= -b\b(t)W(X’Y’Z)COSU on SB
¥, = 0 on SfI
(g)

- 9l .
-blc(t)W(X,Y,Z)s_m‘ on SB

Once the solutions to the system of boundary value problems are constructed the solutiu: to
the Wing-Body Problem is given by

d(x,y,2z5t) = Wwody + vdy + T¢,

A~ . - (3.2-38)
+ 8¢, + ads + L¢: + b,
wheie
M? .
¢, = ¢H(‘~:,y,z;-‘¥i) + 3—2 [x¢zH(x,y,z;-‘Pi/L‘)

- ¢H(x,y,z;-x‘i’i/U] - % '".[X ¢H(E,y,z;-\§’;/U)d£

8 (3.291)

J e

x 9t o
- ¢H(x3":z§ ’ ggi (E,y,z;-?ilt)isj

fori=1,2,4,6,7 and
¢i = ¢H(X,Y9zi -Wi)
fori=3,5

Having the solution given by equation (3.2-91), the induced acrodynumic pressure is found by
substituting the potentials given by equations (3.2-91) into cquation (3.2-93), viz..

L# 9]
()
e
(8

~ - 1 (3..-
Cpi ™ ~2e4(fesy * 04,0
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By examining ihis summary of the linear theory developed around the Wing-Body
Problem it is readily seen that the theory may be extended to the aerodynamic problem posed
by an arbitrary configuration idealized as ap assembly of any number of thin and slender
bodies. Additional configuration components merely introduce addit.onal mean surface
“oundary conditions of the same form as those repre:2nted by equations (3.2-42). These
additivnal boundary conditions pose additional boundary value problems which must be
solved, and the solutions to these additional boundary value problems are s.mply added to
equation (3.2-38).

3.2.8 Restrictions on the Validity of the Low Frequency Approximation

The lo » frequency approximation is derived in section 3.2.6 as an asymptotic series,
equation (3.2-51), in which the small parameter is the reduced frequency of the unsteady flow
based on a characteristic length of unity, equation (3.2-47). For the approximation to be
valid, the terms of order higher than the zero'M and first-order vermsin the asymptotic series
must be negligible. A fundamentzl restriction on the unsteadiaess of the surface flow
incidence stems from the expansion of the surface boundary conditions, equation (3.2-50).
This expansion is a complex power series, and terms of order Giz and higher are neglected in
the low frequency approximation; thus, introducing the reference length c; used in scaling the
small parameters listed by equation (3.2-21), the fundamental restriction is given bv

k.(= w.c.)<<1l. (3.299)
1 11

From the discussion of section 3.2.6.3, however, it is readily apparent that there are additional

restrictions on the pormissible magnitude of the unsteadiness of the flow unposed by the

boundary conditions. The additional restrictions have been only partially derived, and the

objective of this section is to present those which have been derived and to describe an

approach taken to obtain a complete derivation.

The required smaliness of the reduced frequency tor validity of the low frequency
approximation can be determ:ned only by investigating the effects of the higher order terms
neglected in the approximation. As noted in section 3.2.6.3, the validity of the appro. -ation
is expected to depend on the aspect ratio of a cenfiguration; but, in addition, references 3-3
and 3-4 show that the validity is limited by Mach number as follows:

2

- 1.
K< ——1MM for M<1 (3.2.97)
and
2
k<< M-l for M>1 (3.2-98)

M2

i lie restrictions on the validity of the low frequency approximation, equations (3.2-97)
<l (3.2-98), are derived from the well-known solutions for unstead* lift cn thin bodies in
subsonic and supersonic flow, references 3-3 und 3-4. These solutions are vu™"d for k = 0(1).



and are given by the complex amplitude of the velocity potential expressed as an intcgral over
the thin body mean surfaces Sy, and appear as follows:

For subsonic flow

¢ (X:Ys skeM) = - '.;'i! JI y(¥X;1,Yy)
‘w
{3.2-99)
.. M . <
3 [1 ik M%) - R}} ik(E-%)
* 3> g © g2 dXIdY;e dg
Fer supersonic flow
" 1 X -
¢ (X,Y,Z;k,M) = T I[ \"(,XlaYl)
B 5 w o
: (3.2-100)
. 2 z =3 -
x O {l elk(M /B<)(E-X1) cos(k R)I e ik (g X)D..
aZ IR
where
RZ = [(5-%,)2 + B2(y-Y;)2% + B%2{z-2,)?%7,
r? = B2[(y-Y;)? + 221,

and
,(X1,Y1) is the unsteady load amplitude.

The limitations of the low frequency approximation are found from the conditions
which must be placed on equations (3.2-99) and (3.2-100) to permit a convergent power series
expansion of the terms dependent on k. In the supersonic casv, equation (3.2-100), the
exponential terms ccntain the following geometric quantities: (§- X1), (§-X), and R. Tk :se
quentities influence the range of vatiaiy of the expansio:.

Assuming that the pot.*."ial ‘s to be evaluated in the neighberhood of the thin body, the
quantities £ xllmax' '{ -8 ,xo and Ry o are of order unity compared with the

dimcensions of tiie wing. T .« ponertials in the integral for the supersonic case may
tierefore be expanded iy powers of k provided

k<<t and kf’l 1
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This establisaes the inequality given by equation (3.2-98). . or the subsonic case, hovever, it is
not c'ear w'iether the exponential terms can be expanded in powers of k. The questior. arises
because of the infinite lower limit of the outer integral, equation (3.2-99).

Following the analysis of reference 3-5, the integral for sut H>nic flow is separa‘ed into
two parts; as follcws:

0 .
¢* = [ H(E,y,z;k,M)elK(E‘X)dE

-
X - 13

+ I H(E,y,z;k,M)eik(E-X)d
'x-Xo

£

where H represents th< surface integral in equation (3.2-99). The inte: vals or integration are
shown by figure 3.2-J. The distance X, is chosen such that the first integral, referred to in the
following as 9%, become: an integration from -oe to a poiut some chord lengths ahead of the
thin body surface Sy. The secong integral, termed @yy. is confined to the region occupied by
the thi.. vody surfacc.

Y

TA X

U
X -
Region of Region of
integration integration
for g \;V for ¢ "o

-— e wun e e s cen Wb s

J
FIGURE 3.2-9.—REGIONS OF INEGRATION FOR SUBSONI(: ' “LOCITY FOTENTIAL

. Referring to equa‘ion (3.2-99), it is seen that the exponential term in ¢\'N may b:
expanded in powers of I provided

k<<1 and k<< [B%/N,

This establishes the inequality given by cquation (3.2-97).
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The contribution o the potential $* from the far field ahead of the thin body, viz., ¢%,.
is_approximated by introducing the following assumptions:

82(y-Y,)? + B2z2? <<(E-Xy)?
and (3.2-102)

(E-X;)% = (E-X)2%.-

These exp-essions state analytically the assumption that the potentials are to be evaluated in
the region of the thin body and, thus, over a region having dimensions which are small by
comparison with X,. Performing the ¢ (ferentiation indicated in equation (3.2-99) and
introducing the assumptions of equation (3.2-102), the potential $% becomes

o = I;% ”7(X1,Y;)dX1dY1
Sw
(3.2-103)
%=X, {kM(X-£) + B2 iR/ (0 TCx-E) g
oy %=E |
For small reduced frequencies the last integral in equation (3.2-103) becomes
x-XO
I ikM(x-E) + Bf,,-?.'_k/(l-M)](x-E)dE
- (x-£)3 ~
(3.2-104)

2
= ——gx -i}%— + %kz 1n k + (terms of order k? and higher)
c o ’

The relative magnitudes of these terms, however, cannot be established without relating the
magnitude of X, to the dimensions of the sunace Sy.

The magnitude of X, is implied by the first of the assumption: listed as equation
(3.2-102). Clearly,

(£-X;) min = XO (3.2-105)

Also, since all dimension ; are referred to the reference length € by having defined k =wcB, it
follows that, when the reference length is taken to be the mean wing chord, a relationship in
terms of aspect ratio is found, viz.,

B2(y-Y;)2max = R?(AR)2. (3.2-106)
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Combining equations (3.2-102) with equations (3.2-105) and (3.2-106) leads to the
following inequality:

B AR << X_ (3.2-107)

In oblaining the restriction of equation (3.2-97), however, it was assumed that the distance Xo
has the order of magnitude unity. Thus, the expansion of ¢3, given by equation (3.2-104)
can only be valid for very small aspect ratios. Assuming AR << 1, the first real and-
imaginary terms in the expansion of ¢2, are dominant for k << 1 and the term 1/22n k

- and all higher order terms in k may be neglected.

The analysis does not provide a reliable estimate of the validity of the first order in
frequency approximation for thin bodies having an aspect ratnoofo:derumtx or larger. In
these cases the expansion of ¢, shows that the first real term vnz.,p 2X,,“, is of order
'umty or smaller and, thus, leads to conjecture regarding the admissible magmtude of the term
1/2k2in k. The introduction of larger aspect ratios, however, violates the assumpnons leading
to the inequality expressed by equation (3.2-97), and the magnitude of ’W relative to that of .
¢, becomes uncertain as well.

Experience with the method has shown that it gives reliable results for wings of aspect
ratio less than 7 in subsonic flow, figures 3.2-10 and 3.2-11. No systematic effort, however,
has beén carried out to establish the limits of validity for larger aspect ratios. Figure 3.2-19
shows results for a circular wing, AR = 0.785. undergoing unsteady pitch oscillations at M = 0,
0.5, and 0.9. The results are in terms of the r:at and imaginary parts of the lifting pressure.
The discontinuous pressure distribution was computed using the low frequency approximation
evaluated by the numerical method cor.tained in the FLEXSTAB system, while the
continuous distributions were obtained by e -aluatiing equation (3.2-12) using the method of
reference 3-6. Figure 3.2-11 shows similar results for the Boeing SST wing planform,

AR = 2.6 at M = 0.8. The comnarisons shown by figures 3.2-10 and 3.2-11 indicate that the
low frequency approximation is valid for low and moderate aspect ratios. A complete
evaluation of the approximation’s limitations, however, requires a parametric study involving
at least aspect ratio, Mach number, and reduced frequency.

3.3 FORMULATION AS A SYSTEM OF INTEGRAL EQUATIONS

The theoretical development of section 3.” has :ed to a system of linear boundary value
problems, summarized in section 3.2.7. Solutions to these boundary value problems are
numerically evaluated by the FLEXSTAB system. They are constructed in this section in the
form of a system of integral equations. The numerical evaluation method-applied to the
system cf integral equa ions—is derived in section 3.4.

The soluticn (o the acrodynamic problem is the sum of the velocity potentials €;9;
tauation (3.2-10). Each c: these velocity potentials is a linear combination of the functions
2H (X,¥.2; - ¥yy), which are solutions to linear boundary value problems, section 3.2.7. The
boundary value problems are all of the same form, consisting of the classical steady flow
equation and boundary conditions of the type encountered in steady acrodynamic problems.
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e Method of reference 3-6, k << 1
~meme Present method

FIGURE 3.2-10.~-COMPLEX AERODYNAMIC LOAD ON CIRCULAR WING OSCILLATING
IN PITCH ABOUT MIDCHORD
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FIGURE 3.2-11.—COMPLEX AERODYNAMIC LOAD ON SST WING OSCILLATING

IN PITCH ABOUT MIDCHORD
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Following the usual approach, the solutions to these boundary value problems are formulated
as integral equations involving integrals of distributicns of flow singularities (i.e., sources,
doublets, and vorticities) on or interior to the surfaces where the boundary conditions are
specified. The aerodynami. problem then becomes one of finding the strengths of the
distributions such that the potentials ¢y, rcpresented by the integral equations, satisfy the
boundary conditions.

Section 3.3.1 describes the general approach taken wherein the integral equations are
reduced to integrals on only the mean surfaces of the thin and slender bodies of a configura-
tion. In section 3.3.2, each of the boundary value problems is separated into two parts. One part
is 2 boundary 'alue problem governing the flow about a configuration component isolated in
an undisturbea freestream. The second part is a2 boundary value problem governing the effects
of interference. Finally, in section 3.3.3, integral equations governing the aerodynamic surface
pressures are derived.

3.3.1 General Approach 7
3.3.1.1 Formulation as an integral equation.—As shown by reference 2-3 and most :
theoretical aerodynamics texts, a solution to the homogeneous form of the fl. « equation, i.e.,
2 = V\
B (¢.H)xx + (4>H)yy + (th)zz 0,
in the flow fieid V enclosed by the surface S can be expressed by the following integral -
equation:

¢H(x,y,z) = II [m(E,n,c)KS (X,Y,Z;E,H,C)

3.3-1
+ H(E,n,C)KnD(XaYaZ;E,n,E)]dS ( )

where the functions KS and K™D are, respectively, the expressions for unit sources and
doublets located at points £,9,8 on the enclosing surface S’ and are given as follows:

Unit source:
S _ 11
K = - E; R for M<1
- 11 (3.3-2)
= - -2—1—\: ﬁ for‘ M>1
Unit doublet with axis along the surface normal n:
nD _ 1 23,1 .
K R v s—n-(ﬁ) for M<1i
(3.3-3)
_ 1 3,1
R —a—ﬁ(ﬁ-) for M>1



where

R =\ (x-£)2 + B2[(y-m)? + (z-¢)2]

The functions m(¢, n, $) and u( € ,9,0) specify the strengths of the sources and doublets
distributed on S , and a solution to a boundary value problem involving the homogeneous
flow equation is constructed by finding the functions m and p so that ¢y satisfies boundary
conditions speciiied everywhere on S.

From section 3.2.7 it is seen that the solution to the Wing-Body Problem, ¢, given by

" equation (3.2-91), is the sum of 7 solutions to the homogeneous flow equation. Each of

these solutions must satisfy boundary conditions on the mean surfaces of the thin and slender
bedy, Sy + SB, and on the wake surface, W. In addition, the potential ¢ must vanish or
remain finite at large distances from the wing-body combination, i.e., on the surface £ shown
by figure 3.3-i. The surface Sy + Sy + W +Z, where the boundary conditions are specified,
completely encloses the flow field V surrounding the aircraft: hence, each of the boundary
value problems which must be solved is of the form which may be solved by solving the
integral equation expressed by equation (3.3-1).

FIGURE 3.3-1.-SURFACES SURROUNDING THE FLOW FIELD

3.3.1.2 Reduction to an integral on the mean surfaces of thin and slender bodies. - There
are an indefinite number of different distributions, m and g, which, when substituted into
equation (3.3-1), yield a potential satisfying specific b ary conditions on S. Since the
boundary conditions do not determine the distributions .uquely. various arrangements of the
distributions may be considered for any onc boundary value problem and the analyst is free to
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choose an arrangement which appears tc offer computational advantages. The arrangement
chosen tor the FLEXSTAB system is ess :atially that of reference 1-1 whercin the inicgral
equation, equation (3.3-1), is reduced to an integral on the mean surfaces of thin and slendcer
bodies alone.

The reductior of the integral equation is achieved from a consideration of three
characteristics of tne boundary conditions and the elementary, singular solutions. First, it is
noted that the boundary conditions require that ¢ vanish on the surface Z in subsonic flow,
while in supersonic flow ¢ must vanish on certain portions of £ and must be determined on
the remaining portions of T by the distributions on Sy + Sg + W. The functions m
and p are therefore set to zero on Z, leading to

nD

oy = ff  (mk® + uk"Pras

Sw+ SB+ %)

Second, sources produce only a symmetric flow disturbance inappropriate to thz wake;
hence, m is set to zero on W leading to

oy = [f mKkPas + ff ux"Pas

SW+SB Sw+SB+W

Third, the integral of the doublets on the wake surface is removed from direct consideration
by considering the doublet distribution to be made up of line doublets, i.e., lines of unit
doublets lying paraliel to the X-axis. These line doublets yield a discontinuity in d¢/dx at their
ends; and, since the wake boundary condition requires this quantity to be continuous

on W, the line doublets are originated on the mean surfaces and extend to infinity in the
positive X-direction. As shown by equation (5-35) of reference 2-3, the potential due to these
line doublets may be expressed as follows:

[ ]

Kv(x,y,z;i,n,c) = [ K" (x,y,2;67,n,2)dE" (3.34)

Ty

where KV is recognized as the perturbation potential due to an elementary horseshoe vortex
of unit strength with bound element located at £,1,¢. Using this result to replace all doublet
distributions by distributions of vorticity, the integral equation reduces to

¢H(x,y,2> = ff [m(E,n,c)KS(x,y,z;€,n,c)
Sy * Sg
(3.3-5)

+ Y(Eav,c)Kv(x,y,z;E,n,c‘lds
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where 7(£€,7,{) is the strength of the vorticity distribution on Sw * Sg. Equation (3.3-5)
constitutes the desired result--an integral equation in terms of distributions on the surface
Sy + Sp alone.

3.3.2 Method of Soluticn for Individual Flow Problems

Each of the individual flow problems, which are solved in constructing the solution to
the aerodynamic problem for a configuration, section 3.2.7. is solved in two steps. Each
bounaary condition among equations (3.2-97) involving non-zero flow incidence on one of the
surfaces Sy or Sp is solved assuming the surface to be isolated from the remainder of the
configuration, i.c., ignoring the effucts of interference. These isolated thin and siender body
solutions yield an interference flow incidence denoted as \lli"" at the mean surfaces. This
interference flow is suppressed by a vorticity distribution at the mean surfaces actermined by
the expression

. . \'%
\y}nt - ff ilnt gK ds
1 S '+ 8 n (3.3-6)

Letting the vorticity and source distributions required to satisfy the isolated flow problem be
denoted as

YilSO and m-;J.SO, 3.3-7)

the solution to the problem including the effects of interference is given by

int
[(\i

i \Y
ch(x,y,z; -‘i/i) = ff + YiSO)K

Se, + S
W
B (3.3-8)

+ miSOKS]dS

The problem given by equation (3.3-6) and solved to determine \l'iim is termed the aero

dynamic induction problem.
This approack ~ applied tc each of the following problems:

Isolated thin body thickness (section 3.3.2.1)
Isolated thin body steady lift (section 3.3.2.2)
Isolated slender body thickness (section 3.3.2.3)
Isolated slender body steady lift (section 3.3.2.4)
Steady acrodynamic induction (section 3.3.2.5)
[solated thin body unsteady lift (section 3.3.2.6)
[solated slender body unsteady lift (section 3.3.2.7)
Unsteady aerodynamic induction (section 3.3.2.8)



This development is applicable to arbitrary configurations, not just the Wing-Body
Problem. Equations (3.3-6) through (3.3-7) take cn the appropriate mecning by letting Sy
and SB represent the total surface area of the mean surfaces of any numkter of thin and slender
bodies, i.e.,

N
S, = L S, -
W I=1 Wi (3.3-9)
and
M
S, = ¢ S
B J=1 BJ (3.3-10)

where Sy is the mean surface of the 1th thin body and Syyj is the mean surface of the sth
slender body.

3.3.2.1 Isolated thin body thickness problem.—The isolated thickness problem for a thin
body is discussed in detail in sections 7-2 and 8-2 of reference 2-3. The thickness shape of the

1M thin body is given by equation 3.2-12 as follows:

Zy = T{Fp(Xp5Y¥1) (3.3-11)

in the local axis system of the body. The problem consists of finding the source distribution
m(Xl,YI) on the mean surface such that the potential

S C (fgve vayyS
O (X1o¥7eZ7) = JImXI YD (R, Y52
WI

13 Xi ,Yi)dXiin (3.3-12)

satisfi s the boundary condition, equation (3.2-42¢),
S
9¢ oF
WI . I
x5 - T Tray— (3.3-13)
d Z1 I3 XI
on the mean surface of the I thin bndy.
As shown by reference 2-3, it follows directly from the properties of the source

distribution that the required distribution is

N T (3.3-14)
m(XI,YI) Ty (XI’Y ).
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- The solution to the isolated thickness problem for the 1th thin body now follows directly as

3F
S S ¢ T, oovuS v e saweay(33-15)
¢WI(XI,YI,ZI) = =5 é[ §§E(XI’YI)K (XI,YI,ZI,XI,YI)dXIdYI

WI

3.3.2.2 Isolated thin body steady lifting problem.—In the FLEXSTAB system the steady
lifting problem for both subsonic and supersonic flow is solved by finding the appropriate
vorticity distribution on the mean surface of the thin body essentially as shown by section 7-3
of reference 2-3, for subsonic flow. The integral equation appears as

V - td - v - ”~ - P4 ”~
dyur(Xps¥a2p) = é] Y, (X3, YK (X, Y ,205X],Y1)dAX7AY] 3.3.16)
Wl

and the problem consists of finding the vorticity distribution Y(X[,Y}) such that the potential
OWI(XI’YI’ZI) satisfies the thin body surface boundary conditions, equations (3.2-42):

3¢ N -
Wl _ o0+ 9H
——57; = W)\w(t)coseI - V)\V(t)81nOI Gle(t)axl
(3.3-17)
- v
= - Viyr
n the mean surface SWl for a specified instant of time t, i.e., by solving the integral
equation
aKV e
ffyo(XI,YI)gzidedYI = wW\_cosO;
WI
(3.3-18)
- QVA sin0, + 02X (t)gﬂ
v I e oX

I

for 7, (X ,Yl). Substituting the resulting vorticity distribution into equation (3.3-16) yields
the desired solution.

3.3.2.3 Isolated slender body thickness problem.—The isolated slender body thickness
problem is formulated in the FLEXSTAB system using the boundary conditions of classical
slender body theory derived in sections 9.13 and 9.14 of reference 3-7. The slender body
thickness boundary condition, given by equation (3.2-42¢), is therefore replaced by the
following boundary condition:

ags _ , dR 3¢5, .
a a-— = a dXJ (1+a —~ (3.3-19)



on the surface Sé j of an equivalent bady of revolution about the mean centerline, figure
3.3-2, where r is the cylindrical coordinate normal to the mean centerline.

2,

Circular cross section equivalent to
actual body cross section

- VY,

Surface of body of revolution SB J

FIGURE 3.3-2.—SLENDER BODY CROSS SECTION
FOR CLASSICAL SLENDER BODY THEORY
The effects of slender body thickness are represented by sources distributed along the

mean centerline; thus the perturbation velocity induced by thickness of the J th gender body
is given by

S - - S - rd e
¢BJ(XJ,YJ,ZJ) = 1{ m(XJ)K (XJ,YJ,ZJ,XJ)dXJ (3.3-20)
BRJ

where Ly is the length of the slender body centerline. The distribution m(Xj ) is determined
by requiring ¢p JS to satisfy equation (3.3-19) on Sé j » i.€., by solving the integral equation

S S
-y r oK _ dR 3K ) .- _ _dR (3.3-21)
{ m(X) 50— = a3x 55 ]de = aso
BJ J

for m(Xi ). Substituting the resulting source distribution into equation (3.3-20) yields the
desired solution.

3.3.2.4 Isolated slender body steady li::;vg problem.— As in section 3.3.2.3, the isolated
slender body sicady lifting problem is formu:.-ted using the boundary conditions of classical
slender body theory. The boundery conditic.:. given by equations (3.2-42a,b.¢,f) are replaced
by the follow*'g boundary conditions on the surface Sgy shown by figure 3.3-2:
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S0y ol

woss S wAw(t) sinp (a)

S8 T

A4 ¥ Vkv(t) COSu (b)
9bg _ J

b 3% - b)\b(t) _—BXJ cosu (c)

: ol

N a ~ -

ol 5—%7 = C)‘c(t)_axj siny (d)

(3.3:22)

The solutions to these problems are expressed in terms of doublets distributed along the
mean centerline of the body. Using the terminology of section 9.14 of reference 3-7, the
problems posed by (a) and (d) represent a cross flow in the Zj direction, while those posed by
(b) and (c) represent a cross flow in the Y ] direction. The Z j cross-flow problems have the

solutions

7D _ YARPRA)) - oy
¢BJ(XJ,YJ,ZJ) = Tf uo(XJ)}\ (X1,Y ;.7 53X])AX]
.JBJ

while the Y cross-flow problems have the solutions

YD _ Y, s\, YD
Leg

YJ,Z ;X 2)aAX

J°? J’7J J

where, in the notation of equation (3.3-3),

Do 181 -
K S - BZJ(R) for M<i

= _:L  ,1
= - 5 57 (ﬁ) for M>1

J
and

YD _ 1 9 ,1 a
K = - EF §?T(§) for M<1
- 5% 3—3— (%) for M>1

(3.3-23

3.3-24)

(3.3-25)

(3.3-26)



The integral equations which must be solved to determine the distributions on(XJ) and
poY(XJ) are as follows:

ZD . . 31

fou? L axr o (OW + or (D) (3.3-27)
0 Z J w c X
Los J J

obtained by evaluating the coordinatesu,ras p=#n/2andr=12Z J» figure 3.3-2; and

YD G

K . _ ~ — ~ J

{ uY dXJ = vAv(t)V + bAb(t)—BX (3.3-28)
7 0 J J

“BJ

l°’,

[ 3]
<

obtained by evaluating the coordinates u,r as # = 0, and r = Y, figure 3.3.2. The isolated
slender body steady lifting problem is solved by substituting the resulting doublet distribu-
tions into equations (3.3-23) and 3.3-24).

3.3.2.5 Steady aerodynamic induction problem.—Sections 3.3.2.1 through 3.3.2.4 give
solutions to the aerodynamic problems pased by configuration components, viz.. thin and
slender bodies, when they are isolated from one another, ignoring mutual interference
between the comr nents. The effects of interference are accounted for in the aerodynamic
induction problem, wherein vorticity is distributed on the raean surfaces of all the configura-
tion components to account for the effects of interference. The solution to the problem is
therefore g ~n by the following integral equation-

v int v 3.329)
¢’int(x’y’2) = jf YO (£,n,0)K (x,y,235,n,5)dS (

Sw * Sp

where §,1,{ is a poini on a mean surface, Sy + Sp is the total mean surface, and Y,(£,n,8) is
the vorticity induced by steady aerodynamic interference.

As noted in section 3.3.2, the vorticity appearing in equation (3.2-29) is that required to
suppress interference flow induced at the mean surfaces. The interference flow at the mean
surfaces is computed as a normal derivative of the potentials represcenting solutions to the
isolated body problems. As an example, consider the solution to the isolated thickness
problem for the 1th thin body, equation (3.3-15). The interference flow is found by evaluating

3¢ 5

t - W (3.3-20)
WWI(X,Y,Z) R v

at the mean surfaces of all bodies of a configuration except the 1th thin body. The resulting
flow ircidence is set equal in magnitude but opposite in sign to that induced by the vorticity

of eqi.ation (3.3-29), i.e.,
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34’ int v
—2Lx,Y,2) = ]I Yo (50,0035 (x,Y,2;€,n,00as  G33D
+
w B
This integral equation is solved and the resulting vorticity distribution is substituted into
equation (3.3-29). The resulting velocity potential is the soiution to the aerodynamic
induction problem governing the interference effects from isolated thickness of the It
thin body.

The above operations are carried out for each isolated body problem associated with a
configuration. The sum of the potentials fo the isolated body problems and their correspond-
ing aerodynamic induction problems constitutes a solution to the steady aerodynamic
problem for a complete configuration.

3.3.2.6 Isolated thin body unsteady lifting problem.—The solutions to the unsteady flow
problems are all of the form derived in section 3.2.6 and are given by equation (3.2-91), i.e.,

2
ei¢i = ¢H(x,y,z; -‘l’i) + E—Iz[x‘bH(x,y,z; —‘i‘i/U)

1 fx

) (x,y,z, -x¥. /U)] - E—- j mcpH(E,y,z;-‘i’i/U)dE

3.291)

36
1| %% ]

In the case of the isolated thin body unsteady lifting problem, the first term of equation
(3.2-91) represents the solution to the isolated thin body steady lifting problem of section
33.22,ie.,

V -
¢H(x,y,z;-‘YWI) = J[ YO(XI,YI )K (x,y,z,X )dX dYI (3.3-32)

SWI
where
\Y
. 3¢
vV _ Wl
Yor® - 5z, °° SwI



The remainder of the solution to the unsteady problem is represented in terms of three
vorticity distributions on the thin body mean surface as follows:

M2 oV V.
B—z- [x(bH(x,y,z;—'IWI/U) - ¢H(x,y,z;-x‘l’“IlU)]

oV
x . x d9¢
- l;[j 2CELyazs =80 /0= o (x,y,2; %-J 5§¥£d£)]
B -co -

2
= %'z [xl[ Yl(Xi,Yi )Kv(x,y,z;Xi,Yi)dX£in
SWI
(33-33)

'JJ v, (X7, YK (x,y,2577, Y5 )X Y5 ]
Swr

- >~ " ) L d L rd -
g2 [II Y1(x7,YDK (£,y,23X], Y7)dX{dY]

Syt

rd r.d v » -~ > >~
- J[ Y3(XI’YI)K (x,y,z;z(IYI)dXIdYI]

SwI

The three vorticity disiributions 7y, T2, T3 are determined by solving the following three
integral equations:

v
1.V 5K
- gtwr T IJ Yigzy 9
Swr
v
it ] v B
I (3.3-34)
SWI
v v
X 3K . K
[ [[ Ylsf; dSdg = II YaazI ds
-0 .
Sw1 SWI
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The resulting vorticity distributions are then substituted into equation (3.3-33), thereby
constructing the unsteady contribution to the isolated thin body lifting problem. The
complete solution is obtained by combining equations (3.3-32) and (3.3-33) to obtain

uv _ \ M2 v \
o1 é[ Y K dS + ?[Xé‘( Y,K'ds - [f v,x'ds]

WI WI SwI
< (3.335)
- 3 [I ff v,k'as - [f vy x'as]
S
—= Sy WI

This result expresses the potential induced by the isolzted thin body subjected to slowly
varying flow incidence. Recalling equation (3.3-17), the solution is seen to depend on

v _*° = - T oo . 3H
Yur --wlw(t)h cos I; + vlv(t)v sin 6; - ele(t) 3%y
and (33-36)
~3A_(t) 3x (t) ~3X
3V _ 20t ~ () _2%etdan
WL T W et W 00 Op v eV sin 6 - o5 ax,

3.3.2.7 Isolated slender body unsteady lifiing problem.—In the case of the slender body,
the general form for solution to the unsteady problems, equation (3.2-92), may be simplified.
The solution to the steady component of the flow problem, section 3.3.2.4, induces a
continuous velocity potential at the wake surface; hence, the wake boundary condition for the
first-order unsteady problem, equation (3.2-53), reduces to

D (1), _
[(d:BJ)x l]=0o0onwW
Because of this simplification, the third homogeneous term in the solution to the first-orde:
problem, equation (3.2-89), may be deleted. The form of the solution to the unsteady isolated

slender body lifting problem is given by equatiun (3.2-92) with the final terms in brackets
deleted, i.e.,

(2 »D
¢IB)J = ¢H(x,y,z; —‘l’Bg ) + %zquvH(x,y,z; -\PBJ/U)

(3.3-37)
- ¢H(x,y,z; -xﬁgJ/U]

where the first tecm is the steady flow solution of section 3.3.2.4.
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The unsteady flow problem i« separated irto cross-flow problems in the Yj and Z;
directions as in the case of steady flow, section 3.3.2.4, with the boundary conditions
expressed as

YD - 3, YD, _ - J
'BJ = - -5;(¢BJ) -—Vlv(t)v cosy - blb(t)'aTJ- cosy
, ~9a_ (%) ~3A, (t) 3G
sYD _ 9?2 YD, _ 9% Mo b
Yoy ¥ " 3tar ey’ TVt v cosM - by 3y, cos
ZD a,.Zzp, _ - I (3338)
Yoj = - a—r(qu) =—wlw(t)w siny - clc(t) WJSlnu
.7D 3 2D A3 (t) ~ N () o
YBI = - W(¢BJ) -‘WT— W sinp - ¢ T ﬁ—‘]‘. sinu

It is noted that these expressions are evaluated at the surface of the body of revolution shcwn
by figure 3.3-2. The solutions are then given by

YD _ ¢ Y (y-yy¥D - ety AR”
éng = { Mg (XK T(X,Y 1,2 15X7)AX]

BJ
M2 Y,y -ynYD YAy
+ Ez[xJ{ uy (XD X, Y 1, Z 15X ])AX] (33.39)
BJ
- { Y bd YD -, - P
/ Wy (XPKT (X5, Y 1, 215X )dX]]
BJ

where the doublet distributions nIY and nZY are required to satisfy the integral equations

YD
YD _ Yy ak'2 . .
¥Yar © ‘{ 1 3 9%
BJ (3.3-40)
YD
+YD _ vy ax’D .
Xy¥py = -] W, S5 dX]
BJ
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ind

ZD _ Z, ooy ZD .
opg © { uy TXPKX Y

J,ZJ;XJ)dXJ
BJ

e W [ WS KEP(x LY 42 3X0)AK]
BT-7U 1M 8§ S R S Rt |

(3.341)
Lpy

SR TS ¢ ) G S J T ed
Lpg

and where the doublet distributions g, Z’,‘zl are requiired to satisfy the integral equations

ZD
7D _ 7 ak?P .
Ypg © ‘{ R T
BJ (3.342)
7D
-7D _ Z 3K .
Xs¥pg = ‘,f ¥, Tar X5

The solution is constructed by determining the doublet distributions satisfying the integral
eaua ions, equations {3.3-40) and (3.3-42), and substituting the resuits into equations (3.3-39)
and (3.341).

3.3.2.« JInsteady aerodynamic induction problem.—The effects of unsteady interference
flow are ...counted for in the solution to the unsteady aerodynamic induction problem. As in
the «..se of steady interference, section 3.3.2.5, the solution is expressed in terms of vorticity
di<.. ibuted on the mean surfaces of all components of a configuration. The form of the
sJlution is given by equation (3.2-92); hence, in terms of vorticity on the mean surfaces, the
solutioa is given by

¢L.W (x,v,2) = [f YlnEE n C)Kv(x ys23E,n,7%)dS
ing XY o s Ny 1YsZ2385,N, 35
Sw * Sp
Mz int v
+ ’B‘:‘[X_(,-( Y1 (EsnaC)K (XaYsZ;E,ﬂ»C)dS -
Sw + SB
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int v
~Jf v, (E£,n,0)K (x,y,23€,n,L)dS]
Syt S

B
x int
* %’{I ff v,  (&n,0)K(ESy,z3E,n,5)dSeE” (3.343)
Sw + SB
int v

- Jf Yy (&,n,0)K (x,y,23&,n,5)dS]
S
W+ SB

where the interference vorticity distributions are required to satisfy the unsteady interference
boundary conditions generated from the isolated body solutions of sections 3.3.2.6 and

3.3.2.7. For the example of unsteady cross flow in the Zj direction, the integral equations are
as follows:

2,2D int
1 ®¥pg = ff ﬂ(_vds
U 9t3n L on
Sw + Sp
32¢ZD int
X BJ ¢K
g 5o - JJ Y2 3nds 3.344)
Sw * Sp
X int v int
9K _ K
f.( Yl an ds = !I Y, n ds
- sw + SB sw + SB

Integral equations of the type shown by equation (3.3-44) are solved for each of the
isolated body unsteady flow problems, and the interference problem for a complete configura-
tion is solved by substituting the combined interference vorticity distribution into
equation (3.3-43).

3.3.3 Integral Equations Describing the Aerodynamic Surface Pressure

The first-order approximation to the aerodynamic pressure is given by equation (3.2-29)
(or in compact notation, equation (3.2-93)), and is related to the flow incidence prescribed by
the boundary conditions by combining equations (3.2-91) and (3.2-93) to find
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Cp(x,y,z;’l’,‘ii/U) = - 2{¢Hx(x,y,z; -‘l’i)

M2 . . (3.345)
+ Ez[xtbﬁx(x,y,z; -‘ri/U) - cpHx(x,y,z; —x‘l’i/U)]

p. 4

% e n i
or for the case of steady flow
Cp(x,y,z;‘l’i) = - 2¢Hx(x,y,z; -‘(’i)

When the low frequency approximation is applied to the problem of an isolated slender body
in unsteady flow, a case in which there is no wake, the unsteady pressure coefficient is given
by

Cp(x,y,z;‘l’i,‘f’i/U) = -2{¢Hx(x,y,z; -‘l’i)

M2 - 3 -x¥
gty Coyezs 45700 - oy (xoy,2; —x¥;/0)] (3.346)

1

*B

2¢H(x,y,z 3 —‘i‘i/U)}

For the case of an isolated slender body in steady flow, the induced pressure coefficient is
given by equation (3.3-45). The aerodynamic surface pressure is found simply by evaluating
these equations at the aerodynamic surfaces. Equations (3.3-44), (3.3-45), and (3.3-46) are
formed as integral equations representing aerodynamic surface pressure by combining them
with the resuits of section 3.3.2 as follows.

Isolated thin body thickness pressure: Combining equations (3.3-15) and (3.345),

S (Xph¥raZo) = = 1o [ A TSI 4
pyr I 17T ‘T L) A% X 1o (3.347)
- WI

where Zy= 27jF(X},Y)) is the thickness shape.
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Isolatod thin body steady lifting pressure: Combining equations (3.3-16 and (3.345).

v
v _ K oo
CPWI(XT_,YI,ZI) = -2SH Y, ——d.(,Xt X7dY] (3.348)
WI
where 7,(XY]) is given by equation (3.3-18).

Isolated slender body thickness pressure: Combining equations (3.3-20) and (3.345),

S
~S - aK” ... (3.3-49)
prJ (XJ,YJ,ZU,) = =2 {ma—x—de
BJ Y

where m(X) is given by equation (3.3-21).

Isolated slender body steady lifting pressure: Combining equations (3.3-23) and (3.3-45),

ZD
335
Corr = =2 [ ug T3ga; 220
BJ L J

BJ

where uoz(x,) is given by cquation (3.3-27); and combining equations (3.3-24) and (3.3-45),

YD (3.3-51)
YD Y 3K'" ...
Coo. = 2 [ vy x9%]
BJ L J

BJ
where on(XJ) is given by cquation (3.3-28).

Steady interference pressure: Combining equations (3.3-20) and (3.3-45),

¢ (X,Y,2) = -2 ff vy

int S
wt Sy

int v (3.3-52)
Sy as

where ‘Yoi“t(X,Y,Z) is obtained by solving the steady aerodynamic induction problems of
which equation (3.3-31) is typical.
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Isolated thin body unsteady lifting pressure: Substituting into equations (3.3-44),
solutions to the homogeneous flow probiems are constructed by solving the integral equations

posed by equations (3.3-34). These operations lead to

uv
C o (Xps¥p,2q) = =2 f[ Y, 5% ax

Pyt Wl I
(3.3-53)
oMk, mlax mz e
Swr *1
»
82 ff Yy axI

WI

where 7] (X[, Y]), T(X;Y]), 73(X},Y]) are the vorticity distributions found by solving
equations (3.3-34).

Isolated slender body unsteady lifting pressure: Substituting into equations (3.3-46), the
solutions to the homogeneous flow problems are constructed by solving the integral equations

posed by equations (3.3-40). These operations lead to

YD
1D B Y 3K 2 Y YD .
CPBJ(XJaYJaZ ) = =2 { M 'ﬁigde g2 | w K Tax]
BJ BJ
3.3-54)
YD YD
-2‘2[IX‘ T aaxs - [ ) Koax:)
1 9 XJ L 2 axJ
BJ BJ
where pY(x ) and iy Yix 1) are given by equations (3.3-40); while, for the integral equations
posed by eunnons (3.342)
¢ (% ,¥.,2.) = -2 [ uC k.. 2 W2
pBJ J*»J*cg 3 UC aXJd J 32 ] H J
BJ BJ
Zb ZD (3.3-55)
M2 Z 3K . Z 3K
- 2 lxgf “E?EdXJ i { Y2 Y] 1X3]
BJ BJ
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where #Z(Xy) and #5Z(Xy) are the doublet distribution strengths found by solving equations
(3.342).

Unsteady interference pressure: Combining equations (3.3-42) and (3.3-44),

int,,V

int,.V 2
¢V ox,v,2) = -2 ff v, Bas ~2lLIx ff v, Usas
Pint < "3+ g0 B s +g. !
w* Sp w' Sp
(3.3-56)
int.,V int,.V
-l v, $asl e L ff v, Usas
Sy + Sp? S.. + S
wt Sp w't Sp

where 7} 10Y(X,Y,2), 1,1"Y(X,Y,Z), %51"Y(X,Y,Z) are the vorticity strengths found by solving
equations (3.3-44).
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3.4 NUMERICAL SOLUTION

For practical aircraft configurations, an exact numerical solution to the integral
equations derived in section 3.3 is not possible. An approximafe solution is obtained in the
FLEXSTAB system using a method based on a paneling scheme. The surfaces and lires of
integration are subdivided into small regions as shown by figure 3.4-1. These small regions
consist of quadrilateral panels on mean surfaces and line segments on mean centerlines.
Simple distribution functions having unknown amplitudes are assumed for the flow
singularities (i.e., sources, vorticity, and doublets) on the small regions of integration, and
the integration is carried out. These operations reduce the integral equations to algebraic
equations in terms of the unknown amplitudes, i.e., the strengths of the distributions. The
algebraic equations are chosen to be determinant sets for each of the acrodynamic problems
in section 3.3, and they are solved directly.

34.1 Paneling Scheme

In using the paneling scheme, the mean surfaces of the thin and slender bodies are
subdivided into small panel areas, figure 3.4-1. The mean surface of the Ith thin body is

covered by nl planes, whence
I

S =

WI Swri (3.41)

[ e fit=}

i=1

where Syy; is the surface area of the ith panel. Similarly, the mean surface of the Jth slender
body is coverad by mJ panels,

J

Spg °

nm~yg

Jj=1

The centerlines of the slender bodies are also subdivided, figure 3.4-2; and the
subdivisions are line segments of length LBJy. The line seginents on the Jth slender body
centerline, whose number is denoted as 1J, provide a coveri.,; of the centerline. Thus,

Lgg = i: Lgg (3.4-3)
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FIGURE 3.4.1-TYPICAL SURFACE PANELING ARRANGEMENT

Surface corresponding to kth line segment

FIGURE 3.4-2.-TYPICAL CENTERLINE SEGMENT ARRANGEMENT
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3.4.1.1 Local panel coordinate axis systems.— A local axis system is introduced for
each mean surface panel, as shown by figure 3.4-3. For the ith panel on the 1th 1nean
surface, the origin of the local coordinate system has the coordinates X{;:(7), Y;;(0}. Zj;(0)
in the Reference Axis System. The surface of the panel is coincident with tiic *+- 3j; plane,
and 0y; is the panel dihedral angle. The transformatiou from the Reference £ stem to
the local panel axis system is given by

Nrs _ - - ind
Ii = (Y YIi(O))cosG)Ii + (Z ZIi(O))s*nOIi (3.4-4)

ith

panel

FIGURE 3.4-3.—LOCAL AXIS SYSTEM

3.4..2 Local line segment coordinate axis systems.— A local axis system is introduced
for each “lender body mean centerline segment, figure 3.4-4. For -he ith segment of the
mean centerline of the Jth slender body, the origin of the local axis system has the
coordinutes Xy;(0), Y ;(0), Zj;(0) in the Refercnce Axis System. The §gj axis is coincident
with tlie mean centerline, and the Ejj, n; plane may be either parclicl with the X, Y plane or
the X,Z plane of the Reference Axis System. The transformation f.om the Reference Axis
System to the local line segment axis system is therefore given by
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EJj = X - XJj(O)
an (Y—YJj(O))cosu + (Z-ZJj(O))81nu (3.4-5)
CJ;’: = —(Y—YJj(O))sinu + (Z—ZJj(O))cosu

where u=0ormn/2.

rd

Slender body mean centerline segmert

FIGURE 3.4-4.—-LOCAL CENTERLINE SEGMENT COORDINATE SYSTEM

3.4.1.3 Panei geometry.— A typical mean surface panel is shown by figire 3.4-5. All
panels are quadrilaterals with two edges parallel to the X-axis of the Reference Axis System.
The panel span is denoted as bj, and the inboard chord length as ¢;. The tangents of the
angles of sweep of the leading and trailing edges are denoted as (d&7/dn); and (d&[ /dn);.
Finally, a point called a contrc! point is defined for each panel.

l« C; o
4 1
= t 1
&, i /
<+ £Tl
b; ot
- Li=
Panel control point —/ I
3 2

\ Ny

FIGURE 3.4-5.-TYPICAL MEAN SURFACE PANEL
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3.4.1. 4 Paneling arrangement.—Mean surface panels always occur in rows of constant
span as shown by figure 3.4-6. The panel control points to be used later in the development
are located along the area centroid line of the panel row. fizucz 3.4-6. A single conirol point
is located or cach panel.

z

X - Panel control points

Row of mean surface panels

Area centroid line of panel row

F!GURE 3.4-6.—MEAN SURFACE PANEL ROW

The entire mean surface >f every thin and slender body of a configuration is covered
by quac’ ‘lateral panels as shown by figure 3.4-1, with the panels arranged in streamwise
rows parallel to the X-axis. Because the panels are planar svrfaces, the mean surfaces of
slender bodies must be cylinders with polygonal cross sections, figure 3.4-7.

Panel row

Polygon cross section

FIGURE 5.4-7.-SLENDER BODY MEAN SURFACE PANELS
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The fact that the slender body mean surface must be cylindrical leads to a compromise
in representing the mean surface of a wing-body-tail configuration, as shown by figure 3.4-8.
Assuming the actual body to be tapered, a portion of the tail surface falls interior to the
mean surf:ce of the slender body, while the wing surface must be extended from its uctual
root location to meet the slender body mean surface.

X <&

Tail sur

=
&
g
< -

FIGURE 3.48.—-SLENDER BODY MEAN SURFACE
FOR A WING-BODY-TAIL COMBINATION

34.1.3 Image system of panels and line segments.—FLEXSTAB is designed to
evaluate aircraft configurations having a plane of geometric. structural. and inertial
symmetry. The X,Z plane of the Reference Axis Svstem is the plane of symmetry. As a
consequence of the assumed geometric symmetry, the solution to the aerodyna: ‘¢ nroblem
can be expressed in terms of functions either symmetric or antisymmetricin tl- Y
coordinate using the X.Z plane as an image plane.

The geometric symmetry is employed in the paneling scheme. For everv mean surface
panel or mean centerline segrment on the right of the X.Z plane there is a mirror image on
the left of the X,Z plane, figure 3.4-9. Only the panels and centerline segments on and to
the right of the X.Z plane appear explicitly in the following analysis.

For example, the perturbation velocity potential induced by a flow singularity
distributed on the ith panel of the 1th thin body is denoted as

duriX>Y-2). (3.46)

The value of this potential at the control point on the jth panel of the Jt slender body
mean surface is denoted as

¢BJWIj 1 (3.47)
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Explicit line segment
FIGURE 3.4-9.—IMAGE SYSTEM OF PANELS AND LINE SEGMENTS

Letting the coordinates of this control point in the Reference Axis System be denoted as
X(Jj), Y(35). Z(33), the value of the velocity potential at the control point is taken to be

= yps (X(I3),Y(I3),2(J7 ))

+ ¢WIi(X(J 3, - Y(J3),Z2(J3))
where the second term introduces the contribution to the value of the potential supplied by
the image panel, figure 3.4-7. The plus sign for the second term yields a symmetric
distribution of the flow singularity, while the minus sign yields an antisymmetric
distribution.

®BIWTji (3.4-8)

All values of velocity potentials and velocity components at control points appearing in
the following are obtained using formulations corresponding to the example shown by
equation (3.4-8). For brevity of the development. however, all formulas describing these
quantities will be expressed for the right side of the aircraft only. When these formulas are
evaluated. the reader may infer that they are evaluated in the manner used in equation
(3.4-8) whether this is explicitly stated or not.

3.4.1.6 Flow incidence at panel control noints.—The first-order boundary conditions
of section 3.2 are all in terms of flow incidence evaluated at the mean surfaces. Each of the
perturbation potentials must therefore satisfy boundary conditions of the following form at
each panel control point:

Y 24
Ypyg -3%51nGJj ~2¥cos0 . (3.49)

]

where 0” ix the dihedral angle, figure 3.4-3. of the jth pancel taken for the exampie to be on
the Jth sicnder body.
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In the following, the nondimensional velocity components in the Reference Axis
System,

- 99 - 9¢
vV =3y W =3z

are expressed in terms of components expanded on the local axis systems introduced by
sections 3.4.1.1 and 3.4.1.2. The latter velocity components are induced by the flow
singularities distributed on the mean surface panels and mean centerline segments. If the
velocity components are induced by a panel, they are expressed as in the following example:

L ¢
WIi anIi
(3.4-10)
and
. My1i
WIi aCIi

where for the example ¢wj; is the perturtation velocity potential due to a flow singularity
distributed on the ith panel of the Ith thin body. If the velocity components are induced by
a line segment. for example the kth segment oa the centerline of the Kth siender body. then
they are as follows:

_ gk
r = ar
BKk
(3.4-11
and )
y . 1 %8k
Opx | T 38

where the coordinates r and 0 are those shown by figure 3.4-10.

The velocity components given by equations (3.4-10) and (3.4-11) are transformed to
the Reference Axis System and substituted into equaiion (3.4-9) to obtain the desired flow
incidence as follows:

YBowrii T VBowrjiSint9g579p;) (3412
" - wBJWTj ic:os(@Jj-GIi)
¥aaBKsK VrBJBKiji“(er‘e(Jj)) (3.413)
- VGBJBKjk cos(SJj-e(Jj))
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FIGURE 3.4-10.—VELOCITY COMPONENTS INDUCED AT PANEL CONTROL POINTS

3.4.2 Isolated Thin Body Thickness Problem

The solution to the isolated thin body thickness problem is given by section 3.3.2.1 as
a source sheet located on the thin body mean surface and as having the following distri-
bution of strength:

= 1 1 3.4-19)
m(XI,YI) = 311 avI(XI’Y )

In the FLEXSTAB system the source distribution on cach panel, {igure 3.4-5, is given by
dg L

cs [ Bri - ( dn) AT l]SLS

m(Eriongy) = Syrs * (dF,L) (dET) “2 owii
n .
Ii

where S‘CVS“ is the strength of a uniform source distribution and S\'{-S" is the strength of a
source distribution which varies linearly in £y;.

(3.4-15)

The strength of the uniform (or constant) part of the source di-tribution is chosen so
that the thin body has the correct thickness at the panel edges along the panel row centroid
fine, figure 3.4-6. At these points on the ith panel the ordinates of the body thickness shape
are denoted as



Zi)= 7 Fj(1): ordinate at panel leading edge
Zy(itl) = lel(i+l ): ordinate at panel trailing edge

Letting & denotz the chord length of the panel along the panel row centroid line, the
constant strength part of the source distribution is given by

CS

R . s (3.4-16
Syti ° 7 [t Fp(i+l) -t F ()] )

The thickness shape at an arbitrary point X|.Y] on the thin body mean surface is found

X
I
'(IFI(XI,YI) = 2 J m(XI’YI)de (3.417)
X; (L)

where X|(L) is the coordinate of the leading edge of the thin body at Y.

Substituting the source distribution given by equation (3.4-15) into equation (3.4-17)
and integrating shows that the thickness shape varies as a quadratic in X| between the panel
edges, but with the thickness at the panel edge solely a consequence of the constant strength
part of the source distribution. The quadratic variation is specified by choosing the
magnitude of the linearly varying part of the source distributicn, viz., SWli' These coeffi-

* cients are computed by the formula

SCS. _ SCS.
gLs . WIitl ~ “WIi-1 (3.4-18)
Wi g, +E + &
i i+l/2 i-1/2

and lead to an average thickness surrace slope on the ith panel equal to the average slope of
the thickness shape represented by the constant strength distributions of the panels just
forward and aft of the ith panel. The resulting thickness shape consists of a series of
quadratics passing through the ordinaics of the actual thickness shape at the panel edges.

The solution to the isolated thickness problem is now expressed as follows:

nl nl
S . €S CS LS (LS
bur 7. OwriSwri F.E furiSwis (3.4-19)

where the quantities ¢g,‘|’i and ¢\lg~5“ are potentials induced by distributions of unit strength.
These unit potentials are computed in the local panel axis systems nsing equation (3.4-4)
and. for subsonic and supersonic flow, appear as tollows:
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Subsonic flow:

duri¢C1ioNgiotri)”
S - - ”» ”~ rd
Sff K™(Eq5ony428y438752M71)98 73907
WIi
LS - (3.4-20)
OwrilfrisNyiotry) °
S > »~ ~ »~ -
ff g(EIi’“Ii)K (EIi’"Ii’CIi;EIi’ nIi’dEIiani
WIi
where KS is given by the first of equations (3.3-2), and from equation (3.3-13),
(52),
: =T
Ii 1
[(d‘fb) (‘“w]

Supersonic flow:

Cs _ S . . . .
¢WIi(EIi’nIi’cIi) - I! K (EIi’nIi’CIi’EIi’nIi)ngiani

ASy1i
. = 3
durilfrionistri) ¢ (3.4-22)
o 8(Ep;>ny3 )X (BpgangytygsE ong; 6T dng;
Wi

where KS is given by the second of equations (3.3-2) and ASyj; is that portion of the panel
surface area contained in the Mach fore cone extending from the point P(y;, ny;. $1;). tigure
34-11.

Mach fore cone

th panel
FIGURE 3.4-11.—MEAN SURFACE PANEL ARE." CONTAINED IN MACH FORE CONE
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3.4.21 Isolated thin body thickness interference flow incidence.—The solution to the
isolated thin body thickness problem for the Ith thin body, equation (3.4-19), m.ay give rise
to ilow incidence at the mean surfaces of all other thir and slender bodies which are
components of the aircraft configuration. This flow incidence is the interference flow
incidence described in section 3.3.2, equation (3.3-6), and is computed at all control points
of the mean surface panels except those on the 1th thin body where it must vanish.

The interference flow incidence is computed by equation (3.4-12). To use this formula,
the velocity components shown by equations (3.4-10) must first be compuied from the
potential describing the solution to th. isolated thickness problem, equation (3.4-19). These
velocity components are given by

nl nIl

S CS CS LS LS
v =z Verme So2. + L V.. ST
Wl i=1 WIi “WI1i i=1 WIi "WIi
(3.4-23)
and
nl nI
S CS .CS LS LS
w = X Wer oS T w,-:S 7.
WI i=1 WIi“WIi i=1 WILi"WIi
where
CS CS
,es - Muri ocs | Puri
WIi = an-. ® “WIi © T9c..
T4 Ii (3.424)

LS 1S
s . %wrioLs . 2%wri

Ve o T —m—m—— , T: F -
WIi BnIi Wiz 3511

Evaluating the velocity components at the control points, using the method of section
3.4.1.5, and substituting into eauation (3.4-12), leads to the interference flow incidence on
the Kth thin body mean surface as

I I

cs  Cs

- LS LS
Yuxx =, 5. fwiwnkiSwri AWK TkiVT (3.4:25)

1

n.M'J

i=1

-
F S
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and on the Jth slender body mean surface as

nl
¥y = L a
J

i=1

I
Cs cs s LS LS (3.426
BJw1313w11+ifl 3B WIS ioWIi )

where, for example, 3g§.lei is the flow incidence shown by equation (3.4-12) when that
equation is evaluated using the potential induced by a uniform source distribution of unit
strength on the ith panel of the Ith thin body, i.e.,

CS - CS
aBJWIji =+ vurs .sin (6 J3 911)
CS
= Wyicos (GJJ—BIi)

When evaluated at the control points on all mean surfaces of a configuration and
expressed for all thin bodies used in the configuration, equations {(3.4-25) and (3.4-26; are
expressed in matrix form as follows:

(¥t e Lag S s Lag S (s (3.427)

whrre the matrix elements have the following arrangement for a configuration consisting of
N thin bodies and M sleader bodies:

interference flow incidence .natrix,

{\y int| __ o0 (3.4-28)
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influence coefficient matrix for uniform source distributions,

[a €S
BW,W

-

cs ee.r.CS
[aBl,w1] [aBl,WN]

_lr.cs cee.CS 4.
= [aBM,W1] [aBM,WN]’
cs ee. .CS
[aWI,WIJ [aWI,WN]

P L] .

a0 1...1aSS g

L

source distribution strength m.atrices,

and influence coefficient matrix for linear source distributions,

1.8 ]
4w, W

| ~SWN, W1 WN,WNJ_
PN [ LS. ]
{syy! {Sy1}
. {S E -
W
cs LS
{SWN}J {SWN}
LS LS 4]
CaBl,Wll [aBl,WN]
LS LS
[aBM,WIJ [aBM,WN]
LS LS
[aw1,w1] [aWI,WN]
LS LS
fawu,w1] [aWN,WN{_

(3.4-29)

(3.4-30)

(3.4-31)



3.4.2.2 Isolated thin body thickness pressure.—The aerodynamic pressure induced by
the isolated thin body thickness problem, a steady flow problem, is computed on the basis
of equation (3.3-47). Substituting the solution for the Ith thin body, equation (3.4-19), into

equation (3 3-47), leads to the pressure distribution

s nI CS CS nI 1S LS (3.4-32)
C ==2]% w,-.S. ... + L S
PWI i=1 WI1"WIi i=1 WIl WIi

where

3.433)
cs Myri s 2%us ¢
1i%3E,; * YWIiT 3

This pressure distribution is evaluated at the area centroids of the mean surface panels, and
the result for the jth panel centroid is expressed as:

I nl

S n 4CS. .<CS LS LS

C = =2 |z Suyr: + L u S (3.4-34)
Pyr3 =1 UWIjicowIi top CWIWIJi®WIi

When expressed for al! panel centroids, equation (3.4-34) is expressed in matrix form as

S ,iso
p. }

W
where ‘Sg,s' and !S{‘VS: are as defined by equations (3.4-30), while the pressure coefficients
at the panel centroids are given by

) cs cs LS,
{c = [CPM " 1{s°) + [CPMw “alisy (3.4-35)

’-{C S }iSO1
PWI 3.4-36
S ,iso _ . Q3. )
{CP } z .
W
(c S }iso
I
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and the pressure influence coefficient matrices are given by

(crM

[CEM

CcS

LS]

]

—[‘2“S§,w1
[_Zuég,WI
5
E-Qu;"]s_,WIJ
L[-zué;fl,ml

-

]

cs 4]
L-2upy und

[—2\1CS 1

WN,WN
-

LS
W1,WN

LS )
WN,WN™

[-2u ]

[-2u

(3.437)

3.4.2.3 Isolated thin body thickness induced velocity components.—The computations
for isolated thin body thickness interference flow incidence and pressure, sections 3.4.2.1
and 3.4.2.2, require the following velocity components:

Cs
UwIi

CS
YWIi

CS
Ywii

LS
Uwii

LS
YWIi

LS
Ywii

due to a uniform source distribution on the ith panel

due to a linear)y varying source distribution on the ith panel
p

These components, in terms of the local panel axis system, section 3.4.1.1, are derived in

this section.

Again, letting ¢§Vsl‘i and ‘»{Vsli denote the velocity potential induced by the unit source
distributions on the ith panel of the Ith thin body, the desired velocity components are

found as



s _ 3 ,.CS LS _ 3 ,.LS
Ugri © E]‘_.'i(“’wr-ﬁ) Ui "‘ag"i(¢wxi)

s 2 s . 9 LS
Ywii T W (byrs) Wi * ong; (by1:?
cs _ 3 ,.CS LS _ 5 LS
WTi T —ar,ﬁ(‘bwn) YT C a;Ii(¢wxi)

For supersonic flow the velocity components induced by the source panel distributions are
found by the FLEXSTAB system using the formulas given by equations (22) and (27) of
Reference 1-1. For subsonic flow the velocii. components are developed* as follows:

For the constant strength distribution, the velocity potential induced by the ith panel
of the Ith thin body is

n €
¢CS- S j zln‘ ’ g 3.4-3
e ' n F,v (E-E7)% + B2[(n-n")% + 2] (3.4-38)
1 L
dgL agn

where EL = El + (—aﬁ)(ﬂ‘-ﬂl) and ET =g, + (—EF)(”‘ - ny)

where the subscripts indicate the coordinates of the panel corner points, figure 3.4-5. The
integration with respect to &' is carried out to find

) n g2 2 v
S L1 . L, +yL2 + a on- (3.4-39)
WIi L 2
L, +L2 + a
n, 1 1
where dE
= T i
Lu = £ - [E“ +(—aﬁ)(n -nl)]
dEL
Ll = E - [§1 +( dn)(n "“1)]

*To simplify the notation, subscripts are deleted on the symbols denoting the local panel
axis system coordinates, (i.e., £[;.n1;,51; appear as £ n.$®
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and

2

1)
"

B2[(n-n"12 + 2]

The nondimensional velceity compouents are computed from this velciity potential as

follows: n

2 2 X

eI 1[2{ Vig * 2%+ 1,

WIi = 7 4w

i Lu\/Lé + a? + La + a?
2 2
VL3 +a™* L, }4 )
2 [°N

B 1{2— 2 2
L1L1+a +Ll+a

n

LIPY
CcS i [ [ 82(n-n")
vl = 4 = {3.4-49)
WIi Y , 2 , .2 2, L2
, I‘u Lu + a“c + Lu a
_ B2(n-n") }dn'
2 2 2 2
LNLI + a“ + Ll + a
n,
cs  _ 1 B2L
"wii T T wn ) |3 VE?‘;";T'+'L2 b 2
1 u¥-u u

2
T
+ + L2 +
Ll L.1 a Ll a
The integration with respect to n is carried out numerically in the FLEXSTAB system with

the singularities in the integrals evaluated using the procedure described in section 5.3 of
reference 3-10.

For the linear variation in the source distribution, the velocity potential is given by

n, g
T d e ” -
ol .. 1 J an” | g”(E3n7)de
Tt Y@+ BP0 )? + (7]
1 L
where g’ is a linear function of ¢, n and (3.4-41)
dg, dg
- 4 - d -
EL % (g "o F s e s (=D (nmen )



Letting N = -§) —(d¢|/dn)Mn - n°) and D = C - (d§| /dn)3 - ') + (dET/dn) (0 - '), the
imegration with respect to £ is carried out ta find the velacitv nntential as foliows:

r“z N, &Lyt V L + a?
bwri = " tm | [pind p—
T 2 2
nl g-«-‘l +v Ll + a

13.442)

+% ( \IL.; v az -\ 12+ az + £16%S))lan”

where l(¢cs) is the integrand of equation (3.4-38). The nondimensional velocity compo-
nents are found by differentiating ¢‘le|| with respect to £.n.¢ to find

2
n
1 L L
sty = - et g = - =2
M L‘i + a? \J 'i + a?
Lu ¥ l va‘ + az CS ]
+ 1ln — + £I(u )]Jdn'
Ly +V L] +a? (3.443)
n,
2 L 2 -
v’v}‘?i = - ET];.I {I( Cs)g + i - B8°-n") . B8°(n-n7)
ni \/_,fl + 3?2 \IL% + a?
+ EI(VCS)]]dn'
n
2 e 2 )
R | rwHN 4 I o B°¢g + B°¢
WIi U35 D D - - \l - -
nl \Lu + a v Ll + a

+ EI(wCS]jon'

where IuCS), 16 CS), 1iwCS) are the integrands of equations (3.4-40). The integrations

indicated in equations (3.4-43) are carricd out numericatly with the singularitics in the integrals
evatnated using the proc:dure of section 5.3 of reference 3-10.

Equations (3.4-1d) and (3.4-43) are used to compute the velocity components in the
flow ticld immediately adjacent to the panel containing the source distributions. At larger
distances, equations (3.4-40) and (3.4<43) are replaced by approximations which have been
shown to vield the numerical accuracy required by the FLEXSTAB system and which
require less computational time.
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Letting r, be the distance from the centroid of the influencing panel to the point
where u, v, and w are evaluated, the flow field is separated into near. intermediate and far
fields as follows:

ro<2.45d° : near field
2.h5d°<ro<l&.0d° : intermediate field 3.449)
u.0d0<ro : far fielad

where d, is the major diagonal of the quadrilateral pane!. figure 3.4-12.

- C >
-— to
E‘—————h_—
} b
o

Zl"ane! centroid
\ &

FIGURE 3.4-12—MAJOR DIAGONAL OF A MEAN SURFACE PANEL

The values of velocity potentials for the two panel source distributions. equations
(3.4-38) and :3.4-41), in the intermediate and far fields are expressed in series form. The
integrands appearing in equations (3.4-38) and (3.441) are expanded in a Tavlor series
about the area centroid of the panel at 4. . figure 3.4-12. Following the expansion. the
terms of the series are integrated thereby vielding a series representation for the velocity
potentials. For the ur..f ‘rm source panels the series expression is given hy

- £
oSS = _l{_ls . 382(n n,) (& ,0)_1
Wii b (R WIi R; Eono (3.445)
2 (5-g )2 1 82 3(n-n_)? 1 1T
+8 [3—2 - =311 + = [___0 - 3NN,
RS R, EOEO Z QS o}
) ’ o
+ (terms of higher order in % )}
0
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where

Ip o = I (g2 )(n"-n_2dE7dn”

0’0 Syr;

I, £ = [f (E'-Eo)zdﬁ'dn’

° Syri

I = {f (n"-n_)?dE’dn”
Swri

Successive terms in the series are of higher order in terms of the reciprocal of the radial
distance

R, = Vig—go)z + Bz{(n-no)z + g?);

Thus, for points of evaluation £.n.{ for which R,, is sufficiently large, the higher order terms
are negligibly small. For points in the intermediate field the potential is approximated by
deleting terms denoted as higher order in equation (3.4-45). For points in the far field only
the first term is retained and the potential is approximated as

<S

_ 11
¢wri T T uw R

WIii,
i.e., the potential due to a source located at the point £5.74.

The nondimensional velocity components induced by the uniform source distribution
on a panel are found by ditferentiating the potentials, and appear as follows:

For the intermediate field,

2 2
cs 1 £-E, 38%(n-n_) c(%:-EO) )
Ui T T pr 1T ——Sypy f———— [1-8—— 11
1 i R3 WIi RS ]2 EO“O
0 0 (o) -
(3.4-46)
2(E-€ ) (g-go)2 :
+ [3-5 ]Ig £
2R; R; 00
2
382 . 58°(n-n_)
+ FBse-g 0L - > e,
Rg ‘o o
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For the far field.
cs . _ 1 B8
Ywii - T bw R WIi
° (3.4-47)
(n-n_)
cs _ 1., 0
YWIi T T Bt oy Swri
R
CS _ _l 25 o
Wari T T e Fa"wu
0

A similar development for the lincarly varying source strength panels gives the
following nondimensional velocity components:



For the intermedizte field,
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IS - _ L _32————(n no)S
WIi Lm & R? WIi
(o)
LS _ 1 - Bz
"Wri T T &w B owId
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where g, g§ g,, ggg . gm and Zpy are evaluated at the centroid of the panel. viz., §f; = §,.
and ﬂh

3.4.3 Isclated Thin Body Steady Lifting Problem

As noted in section 3.3.2.2, the solution to the isolated thin body steady lifting
problem is expressed in terms of a vorticity distribution on the mean surface of the thin
body as tollows:

O SIS SN E [Jyo(x DKV, Yy, 20387, Y] ) axgdyy

SwI

I

390



where the vorticity distribution is required to satisfy the integral equation given by equation
{3.3-18). An approximate solution is constructed in the FLEXSTAB system by subdividing
the surface of integration into the panels of area Syyj;, equation (3.4-1), and by assuming
each panel to have a uniform distribution of vorticity 2nd a trailing vortex sheet, figure
(3.4-13). The uniform vorticity distribution on the ith panel is expressed as

. g - (3.450)
Yo(E1yong3) = Sypy for Epyonp; in Sy,

where S\Ylli is the strength of th= uniform distribution. An approximate solution to the
problem is then expressed by writing equation (3.3-16) as follows:

nl
v - \"4 AV . - Y 1y »
¢wI(XI,YI,ZI) -iflSWIi[[K (XI’YI’ZI’XI’YI)*xIdYI
S .
WIi (3.4-51)
Streamwise pane! edges A ““

Trailing vortex

£ ’,/,///:,’//,;f’//
—

Panel control point
\—Trailing vortex

Trailing vortex sheet

FIGURE 3.4-13.—PANEL WITH UNIFORM VORTICITY DiSTRIBUTION
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Equation (3.1-18), the integral equation which the velocity potential induced by the
vorticity distribution must satisfy, is expressed in terms of the panel vorticity distributions

I 2V oV (3.452)
SWIisWIi

™M 3

Wv =
WL C

i=z1

e

where w\\('l i> given by the boundary condition

v " s . ~, oH

ww = wWAw cosGI - vV)\v san + 6)53){

and

v - ak"
—aWIi(XI,YI,ZI)_ 37’ d)xIdY

SWIi
Evaluating the influence functions ayv“(XpY].Z[) at the control points of the panels on the
thin body mean surface leads to

nI

\"4 A\ \'4
; I ) (3.4-53
“ury T % ) AT, 4T3ioWIL )

where WWI is the nondimensional component of velocity normal to the mean surtace at the

jth control pomt Equation (3.4-53) is expressed in matrix {form as follows:

v
Gy be=layy o 1Sihs (3.4-54)

A second matrix expression is obtained by evaluating the boundary conditions. equation
{3.4-52), at the panel centroids. The vortex panel strengths required to satisfy the
boundary conditions at the panel centroids are then found as

-1, ° - N - .
{S;’]I} =-[a‘YJI wpd U wA W, b cose -vh (T ) singp +
3 L i
(3.4-55
~ K
I
3 1)
POt

Finally, the solution to the isolated thin body steady hifting problem is obtained by
substituting the values of SX,“ so determined into equation (3.4-51).

392



Equation (3.4-55) is used as a basis for writing a single matrix equation for an entire
aircraft configuration having N thin bodies as follows:

~ - (3.4-56)
vy _ v -1 - - -
{Sw} = [aW,WJ {-wlwfww} vlv{-Vw} + {‘l‘cw}}
where - -
{sy;}
wo|
{Sw}_ : .
{S; e}
| TWN |
- l -
[a;;l WlJ- zeros
3
[aw,w] = .
\ -1
Zeros [aWN,WN]
- —
e . P -
{WWI} cosf, {VWI} Sinex
W) = : gy = -1 ¢
{WWN} cosby {VWN} sineN
B 0
{W—}
{XCW} E-e)\e :
aH
N
(a—x—}
-
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3.4.3.1 Isolated thin body steady lifting interference flow incidence.— As in section
3.4.2.1, the interference flow incidence induced by steady lift on an isolated thin body is
computed using the formula given by equation (3.4-12) expressed in terms of veiocity
components, equation (3.4-10), computed from the solution to the isolated thin body
steady lifting problem, equation (3.4-51). These velocity components are givei by

v n I Vv v
v = I v ' _ .S .
wr © E_ VwriSwrs
(3.4-57)
and
\'4 nI \'4 v
Mwr 7Y, YwiiSwii
where
v .V
v o yur; _ v 9%yry
VWIi T Tno and Ti T ST
Ti Ii

Evaluating the velocity components at the control points, using the method of section
3.4.1.5. and substituting into =quation (3.4-12), leads to the interference flow incidence on
the Kth thin body mean surface as

yS - 21 ay sy 3.4-58)
Wik T foq GWK,WIKiSWIi 3.

and on the JtM slender body mean surface as

S L v
¥Bos 7 1 %Bo,uIidwId (3.4-59)
where the inituence coefficients are given by
M - \Y .
Ak, wikic VwriSin(Oy-9p;)
(3.4-60)
v
Wps 208 (8=81y)
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and ' _

V' .
apg,Wijic  VWIi s:Ln(er-—SI.)

8 (3.461)

— V -
WuTi cos(eJj eIi)

When evaluated at the control points on all mean surfaces of a configuration and
expressed for the steady lift on N thin bodies of a configuration, equations (3.4-58) and
(3.4-59) lead to the following matrix expression:

r i t
{wgw}ln =[a§w,wJ{S§} (3.462)

where the interference flow incidence matrix is defined as
B v 9

v }1nE -----

{wa

(3.463)

r -
]

(3.464)
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and the vorticity distribution strength matrix is defined as

[ ]
{sy; )

2
{sy}= .

3.4.3.2 Isolated thin bg)ﬁjf;weady lifting pressure.—The acrodynamic pressure induced
by the isolated thin body steady lift is given by equation (3.4-48), viz.,

v
P

_ ak"
(XI’YI’ZI) = =2 ——dX dY

C
BXI

WI

Introducing the approximations leading to the solution to the thin body steady lifting
problem given by equation (3.4-51), the induced pressure is found s

I

n
A% v
CP (XI YI,ZI,) = -2 I UWIi(XI’ 1227 )SwIl (3.4-66)
WI .
1=1
where ¢
v —_ ,I
Ugri® rdx dx
Swri
The pressure distribution which gives rise to lift on the thin body is
A\ _ v VvV
AC, (X.,Y.) =C (X:,Y ,Z=—O)'C (XY ,u=+0)
T I°°1I pWI I°"1°°1 V T I°°I

(3.467)

where Z1 = -0 and Z] = 40 are the coordinates of points on the lower and upper surfaces of
the thin body. respectively, figure 3.2-3.

As shown by equation (7-33) of reference 2-3. the lifting pressure distribution on a
thin body is directly related to the distribution of vorticity strength as follows:

Vooiu vy o o o s
F”T(‘I=‘I) = 0y, (M) (3.4-68)
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For the case of uniform verticity on the panels of a thin body, the lifting pressures on the
panels are given by

v - v v
{CP& = [CPMW,WJ{SW} (3.4-69)

where the lifting pr:ssures are defined as

-
{c; Y]
Wl
{cy }z . (3.4-70)
Lw .
cy 1
| Pun
with
v
AC
Py
{(cy 1= :
Pyt :
\Y2
AC
Putn
b o

and AC}/W“ being the lifting pressure coefficient for the ith panel of the Ith thin body—a
uniform value of equation (3.4-67) for points on the ith panel. The matrix of pressure

influence coefficients [CPMy, y ] i simply a diagonal matrix with the factor (2) on the
diagonral, i.e..

v -
A[CPMW,W] = +2[I)

The matrix of panel vorticity strengths ;S\\/,; is defined by cquation (3.4-65).

3.4.3.3 Isolated thin body steady lift induced velocity components. - In the
FLEXSTAB systen* the nondiniensional velocity components appearing in equations
(3.4-57) and (3.4-67) are evaluated using equations 126) through (33) of reference 3-8, The
expressions for the velocity components are derived i reference 3-8 in terms of integrals
over semi-infinite triangular regions having origins at cach of the four panel corners, figure
3.4-5. Denoting the value of the potential induced by the vorticity on the Kt semi-infinite
triangular region as dck): the potential induced by a panel of vorticity is obtained by
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superiniposing th2 potertials induced by the four semi-infini* triangular regions. The
formula representing the potential induced by the ith panel on the Ith thin body is as

follows:

v v v v -
dwri T %wricy) T Gwrica) Y %w1ic3) T fwIicw)

where. for example, ¢&;li(2) is the potential induced by the semi-infinite triangular regicn

shown by

the shaded region in figure 3.4-14.

ith banel of 1™ thin body

4

o

3]
= 7 2
;§§§52§§?’ I /gggfé;2(

N\

g
\

Semi-infinite triangular
region with origin at
panel corner number 2 ~

oo

Y.,

Origin of semi-
infinite region

"FIGURE 3.4-14.—TYPICAL SEMI-INFINITE REGION WiiH ORIGIN

AT A PANEL CORNER POINT

The nondimensional velocity components induced by the kt semi-infinite triangular
region are given by reference 3-8 for a uniform vorticity strength equal to (-1/2). In the
FLEXSTAB system these quantities a.c vempuicd tor a vorticity strength of (+1) and are

given by

v K

Uyrick) - v x (Fy * FY)

v _ Kr. . .
VWiigy T F gth(Fy D) - o]
W v

WIiCk)
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where

and

[

L

R.P.(log—2—+9d )
ll—Mzir
\’-fl—_-f R.P.[log E’+d’
L +1-M 1-M%r”
j1-M°]

tan-](n/g) for M<1
= 0 for M21

log E%; for M1

0 for M>1%

ﬁ fcr Mil
ra2
4

= for M>
r2

= 0.5 for M<1

= 1.0 for M>1

= n?+ g?

E2+(1-M2)r?

LE+{1-M?)n

Z g-Ln

= V(E-Ln)2+ (L* +1-M2)r?

= V(£2)2+(1-M2)(r")?2

= tan A
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while £.1.0 are the coordinates of the point where the velocity components are evaluated
relative to the origin of the semi-infinite triangular region.

3.4.4 Isolated Slender Body Thickness Problem

As shown in section 3.3.2.3, the solution to the isolated slender body thickness
problem is expressed in terms of a line source distribution on the mean centerline of the
slender body. i.e.,

ZJ;X‘})dX:T

c - _ “yiS
¢py(X5s¥5s2y) -[ R(XTIK"(X;,Y s

LBJ

where the source distribution is required to satisfy the integral equation given by equation
(3.3-21). An approximate solution is constriucted in FLEXSTAB by subdividing the line of
integration into segments of length Lg Jj. Equation (3.4-3). assigning source distributions for
the segments. and carrying out the indicated integrations. The specific details of these
operations differ for subsonic and s ipersonic flow, and these two cases are treated
separately in the following.

Subsonic Case: In subsonic flow a uniform source distribution is assumed for the
centerline segments which for the jth segment of the Jth slender body mezn centerline is
expressed as

mCE..) = s3_. (3.4-72)

.Jj

where S[S, 3 is the strength of the uniform distribution. The approximate solution is obtained
by writing equation (3.3-21) as

SR{X, '
Woes | o AR 9 JE = a X 3473
L Spyi| ‘ar v, W, 37
. LaJj

The indicated integrations imply the following velocity components:

S
cs _| 93X

“BJj‘J =x 98¢
Leys

and (3.4-74)

S

] e

BJj |

Lpy

3-100



The velocity components are svaluated at control points on the surface of the
equivalent slender bcdy of ravolutior located at the midpoints of the line segments, figure
3.4-15, with the values at the ith control point denoted as

vCS (3.475)

TBJ,BJij

Equation (3.4-72) evaluated at the it control point becomes

2 yes ol dR(Ji)
r Vv - cs i

= al1+ dRiJi) (3.4-76)
3=1 TBJ,BJ1; J al 5 1“3J BJij BJJ]@J

where a(dR/dX;)(Ji) denotcs the value of the slender body thickness slope at the ith control
point. The required strengths of the source distributions are then expressed in matrix form
as

CS 3.47D
{sgy} = [BsC ]{a(dx g}
where
[BSC,;1 = [v ©° - a i 17
TpJ ,BJij dX BJ BJ1ij
ngS: is the matrix of required source distribution strengths. The solution to the

roblem is expressed by writing equation (3.2-30) as

(3.4-78)
¢ - 2 ¢CS CSs
BJ =1 BJj BJ]
where
s _ S
¢BJ5 = { K°d¢g
RJj
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\ Y,
i™ line source distribution

FIGURE 3.4-15.—SUBSONIC SLENDER BODY THICXNESS
PROBLEM CONTROL POINT LOCATIONS

Supersonic Case: In supersonic flow the source distributions have a linear dependence
on the local centerline segment coordinates £ Jj shown by figure 3.44. The line source for
the Jth segment of the Jth gdender body ongmatm at the pc .t XJ:(0). The origin XJ (0)is
determined such that the Mack cone from the onigin X J-(O) passes through the control point
forthe (j - l)th slender body segn:cnt. Each line source dnstn'butnon extends to the tail of
the slender body at §j:(T). This arrangement is illustrated in figure 3;4-16 and is used for
all source distritutions except the one which is most forward. This source distribution
originates at the slender body nose and varies linearly in strength to the tail. The source
distribution on the slender body centerline is therefore the result of superpositicning
distributions of the form.

LS (3.4-79)
gJ] BJi for Ognggng (T)
Control point cone from AD
for jth segment origin of line source
Control poin Contro! point for
(i - 1) segment
.th line source distribution .. .th
j Origin of j
line source
- y -1 +
X 3 .
jth segment /

FIGURE 3.4-16.—SLENDER BODY ISOLATED THICKNESS
PRQOBLEM CONTROL POINT LOCATIONS
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The velocity components appearing in equation (3.4-74) in the case of supersonic flow
are given by

s _ (“Bri(T a8
Upys = f/ E5x 46
o (3.4-80)
and
s Epgi(T) 5,8
v = [ BB
BJj 0

The strengihs of the source distributions :S% : are obtained from equation (3.4-77), with

the matrix [BSCj] expressed in terms of the velocity components given by equation
(3.4-80). Finally, the solution to the problem is expressed by writing equation (3.2-20) as

1Jg

s _ Yis 1s
%8s =.% %8555B33
I== (3.4-81)
wkere
£, 42 (T)
LS _ (°BJj S
®pyj = { | K-ag

34.4.1 Isolated stender body thickness interference flow incidence.—The interfcrence
flow incidence induced by thickness of a slender body is computed using equation (3.4-13)
expressed in terms of velocity components, equation (3.4-11). These are computed from the
solution to the slender body thickness problem given by equation (3.4-78) in subsonic flow
and by equatior: (3.4-81) in supersonic flow. These velocity components are given by

1J

vPS = X vrS SEJ.
BJ j=1 FBgj °3
13.4-82)
and
ves =0
BJ
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where Sﬁjj refers to ngsj for subscnic flow and to Sksjj for supersonic flow, while

s _ %%J3

Evaluating the velocity components at the control points using the method of section
3.4.1.5 and substituting into equation (3.4-13) yields the interference flow on the 1th thin
body mean surface as

A4

J S (3.4-84)

S S
¥ LWL, BJij BJS

1
wIi "

and on the Kth slender body mean surface as

1J
= I a
i=1

S

S SS (3.4-85)
BKk

¥ BK, BJk: SBJj

where the influence coefficients are given by

S
a .. =V sin(0..-6(J3i)
WI,BJ1] rWI,BJl] Ii
and
as =y sin(8,, -0(Jj))
Jkj ~ . -
BX, BJkj T'BK, BIKS Kk

When evaluated at the control points on all mean surfaces of a configuration and
expressed for the thickness of M slender bodies of a contiguration, equations (3.4-84) and
(3.4-85) lead to the following matrix expression:

S iint _
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where the interference flow is described by the matrix

rs-w
(¥3,)

S (3.4-88
S yint _ {¥py? )

{y =
BW yS }

the aerodynamic influence coefficient matrix is defined as

S S
[a31,31] [aBl,BM]
S ceelad (3.4-89)
S _ [aBM,BI] [aBM,BM]
B [P R
Wl,Bl 4W1,BM
S S
faww,alj ’[aWN,BM]

and the source distribution strength matrix is defined as
B 7]
S
{s3;)
S, = :
(s3} = :
S
BM}

(3.4-90)

{s

3.4.4.2 Isolated slender body thickness pressure. -The acrodynamic pressure indnced
by the thickness of an isolated slender body is computed on the basis of equation (3.3-49).
Substituting into cquation (3.3-49), the solution for the Jth jlender body. cquation (3.4-78)
in subsonic flow or equation (3.4-81) in supersonic flow. leads to the pressure distribution

1J

S S .c
C® = -2 ud..S>.. (3.491)
PpJ 521 BJITBJ]
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where the nondimensional velocity component u|S3 Jj is given by equation (3.4-74) in

subsonic flow and by equation (3.4-80) in supersonic flow. This pressure distribution,
evaluated on tke surface of the slender body, is symmetric about the slender body centerline.

The values of the pressure on the slender body surface are computed at points midway
between the ends of each centerline segr.ent, figure 3.4-2. For the kth segment the pressures
at the points of evaluation are given by

S s faS .83 . (3.4-92)

where ugj BJKj is the X-component of nondimensional velocity at the kth segment due to
the source distribution on the jth segment. When expressed for all slender body line
segments, equation (3.4-92) is expressed in matrix form as

S }1so

_ S S
{cpB = [CPMB,B]{SB}

(3.493)

where :SSB= is as defined by equation (3.4-90). while the pressure coefficient values at
cenierline segment midpoints are given by —
S
{cy }
Bl
{Cg piso - E
B

(3.4-94)

S
{c }
PeM

. -

and tie nressure influence coefficients, i.e., the quantities -lug J.BIkj- are expressed in a
matrix as

11}

[crMy ]

o wm

»B

S
(-2up; py

[-2uS

L BM,Bl

Jeee[-2u

B1l,BM

.'.'. - b
a [ 2UBM,EM
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3.4.4.3 lIsolated slender body thickress induced velocity components.—The computa-
tions for isolated slender body thickness interference flow incidence and pressure require
the following velocity components:

CS
u
BJj due to a uniform distribution of line source in subsonic flow on the jth
CS centerline segment
l'B.l_l
LS
UBJj . .
due to a linearly varying distribution of line sources in supersonic flow
LS extending aft as shown by figure 3.4-17
't BJi

Subsonic Case: The velocity potential induced by the lire source distributed on the kth
sezment is given by

oSS - - L ; BJk dEJk (3.496)
BJk Yw
o
where
=V(r _r” Y2 2
R=TEhtn)™t a
and -
— \/2 2 2
a = B Mngp)' (o)
Mach cone from origin of kth line source
ach cone from tail \ # IJK
Region Hl . Region |
Region i} \
4 O
ik /
[ (tey- Xuk () 7

FIGURE 3.4-17.—REGIONS *OR EVALUATING SUPERSONIC LINE SOURCES
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Letting

EJk - EJk a sinho
. (3.497)
an = =
£ 3 Epol = Lpgy
then
sinh™ (&2k)
cs 1 a
®pax T T Gw J e (3.4-98)
sinh ('5)

The components of velocity induced by the line source are found as follows:

cs
3¢
cs | Z%BUk . 1 __ 1 _

1
uBJk - 35 - U vaz + (5)2 —Vaz v (E"L)ZJ
cs
TN S I £ . (E-L)
Tggk  OF AT VT L ()2 Var s (e-L)?
vgs . (3.4-99)
BJk

Supersonic Case: The velocity potential induced by the kth line source is given by

(E-a); (L-X(0))

oS - o L £-deg” (3.4-100)
BJk 2T R

(o]

where

= Vig-£")2- a , a

o)
n

g Xn, )7 + (g, )2
NS ek’

2 _ = = oJ
Mi-1 , ¢ L =1L X(0) = X3, (0)

w
1)
i
aal
4
=
-

BJ °’
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The first upper limit is applied to region 1I, figure (3.4-17), and the second to region
HI. Letting £-a = cosh ¢ as a change of variable, the integration is readily carried out to find
the velocity potential for regions 11 and I of figure 3.4-17 as follows:

For region 11

LS _]_, 2 _ -1 E
07k = 77 [V(EY*- a® - gcosh™ ()] (3.4-101)

and for region 11

Ls _ 1
%pgx = 7r U V(E-L+X(0))2- a? - Ecosh_l(———g-l‘;xm))] (3.4-102)

The nondimensional velocity components induced by the kth line source in regions 11
and III are given by the following formulas obtained by differentiating the velocity
potential, equations (3.4-101) and (3.4-102).

For region Ll

LS _ 1 -1,k
UBJk- T 3y cosh (g)
LS . _B
ragk 21 y(g)?- a?

wES - g (3.4-103)
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and for region 111

LS . _ 1l L - X(0)
(o))2 a?

u =
BJk 27
V(g gL y*X

+ cosh a

Ls . B E(E-L+X(0)) - a?
TBJk 2ma VEC L +x(0)) %< aZ

<
'

Vo = 0 (3.4-104)

3.4.5 Isolated Slender Body Steady Lifting Problem

The isolated slender body steady lifting problem is posed in section 3.3.2.4, where the
solution is represented by the potentials induced by two line doublet distributions, viz.,

ZD i Z
tpaX Y5z = [l v ,2 5848
Lpg
and
YD Y, . YD
0p (X pY a2 ) = { Mo (EDKTT(X 5 Y 552 £ 56)dE
BJ

where the line deublet distribution strengths ug(Xj) and pg,( Xj) are uetermined by the
integral equations given by equations (3.3-27) and (3.3-28).

An approximate solution is developed in this section following an approach similar to
that used in constructing an approximatc solution to the isolated slender body thickness
probiem in section 3.4.4. The slender body mean centerline is subdivided intn segments
identical to those shown by figures 3.4-15 and 3.4-16. Coatrol points arc located relative to
the ends of the centerline segments for the cases of subs »ic and supersonic flow shown by
these figures, but there are two control points for each segment as shown by figure 3.4-15.
This arrangement forms two sets of control points—one used to determine the distribriion
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strength yg and the other to determine the distribution strength u;( —those controlling the
Z-doublets are along the meridian line at 6 = 90°, while thnse controlling the Y-doublets are

along the meridian line at 0 = 180°. z
J

z doublet control points

J
r—LBJ;—v- \ /
y doublet cor*rol points

FIGURE 3.4-18.—LINE DOUBLET CONTROL POINT LOCATIONS

The potentials for the unit doublets appearing in equations (3.3-22) and (3.3-24) are
found from the potential for a unit source as follows:

S
KYD = - cosG)25
or
and
S
KZD = si:xL—)dK
or

where 9 is the circumferential coordinate shown in figure 3.4-18. To make the following
development more compact, these equations are combined into the single expression

S
( \D ~-cos0)}dK
(7% e (3.4-105)

whiere the upper and lower quantices in the brackets are taken to be in correspondence. This
notation leads to the integral equations (3.3-23)and 3.3-24) expressed by the single
equation
(5Hp 2y
L 2 ~cosG (3.4-106)
BJ ) sin®
BJ

[N

¢
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Y
The line doublet distribution strengths “(()Z ) are expressed in terms of the meun
centerline segments such that

() ()D

Z
“BJg(XJ)SBJJ

Y

represents a distribution associated with the jt* segment and SBZJ- is a constant which
determines the magnitude ot the distribution strength. The functions

(z)

Hgj;
are defined differently for the two cases of subsonic and supersonic flov..

Subsonic Case: In subsonic flow the line doublets are distributed as quadratic splines,
figure 3.4-19. Each of the quadratic splines spans three segments of the centerline commenc-
ing cne segment lei:gth forward of the actual nose of the slender body. The distribution
asscciated with the jl:‘- segment therefore spans the (j-1 yih segment and the (j+1 )th segrient
as well, and ' 2s the following form:

(3.4107)
&)
= hJj_l(g) + hJj(E) for OS&SLBJ]
= hJj_l(E) + hJj(éj) + ﬂJ +l(€) for LBJ] gSLBJj
*Legs
where BIJ*+1
- 2
Nyj-1(8) = (B*lpgsy)
2
) = (LBJj-l"LBJj)(LBJj 1*LBJj+LBJj+1’5
J7 -7
3 Lar3) (Caystlgrier )
2
@ = Lgi-1‘LRgs- 1+LBJj+LBJj+1)(5'_LBJi>
Jj+1 (I_ )(L

BJj +1’
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f"‘tau-—"

S——
i®* centerline segment

FIGURE 3.4-19.—QUADRATIC SPLINE L!NE DOUBLET STRENGTH DISTRIBUTION

Supersonic Case: In supersonic f'ow a line doublet extends aft from the point of
intersection of the body centerline with the Mach fore cone from a control point, figure
3.4-16. The strengths of these line doublets are quadratic in the E;j coordinates shown by
Figure 3.4-16, and are expre. =d as

Y Y
() (;)D (3.4-108)

2
Mok = (Egx? “Spyk

Each line doublet extends from £j; = 0 to £5; = £5;(T), where £;(T) is the coordinate of the
body tail shown by figure 3.4-16.

Substituting the dis*ribution strengths, i.e., either equation (3.4-107) or equation
(3.4-108). into the expression for the velocity potential, equaticn (3.4-106), and carrying
out the integration over the lengths of tke cistributions leacs ¢ the velocity potential
expressed as

G 1w G dyp
83 L% gy

(3.4-109)



The integral equations which must be solved, equations (3.3-27) and (3.3-28), are now
expressed as

lJ ~ - eI
ZD ZD _ J (3.4-110)
Z "B335By3 ° WA Hied 5 .
axd
1J - ~ 98G
YD YD & J
I v .. . = vl Vfbx (3.4-111)
j=1 BJ] BJ] 13X, J
where
a¢zﬁ.
WZD. = BJj (34112
BJj ar
and
YD
9¢n 1o
VYD_. = _LJ-J-
BJj or
Evaluating the velocity components w4y and viR i
g the velocity components WBJj and VBJj at the control points as
7D YD (3.4-113)

YBJBJij VBJIBJij

as well as the functions, V, W, 3l JIBXJ. and ac,/ax, leads to the following matnx
expressions

. Y
2D’ 7D, _ 9
Lags,pgi{Spst = -wA, (W5} CAc{ik&}
i (G 4114)
. . 3G,
[aBJ BJJ{S } = -v)\v{VBJ} -bkb{ﬁg

The matrix expressions given by equations (3.4-114) are solved by inverting the influence
coefficient matrices to determine the doublet distribution strengths.
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The solutions to equations (3.4-114) are combined into a single matrix equation for an
aircraft configuraticn having M slender bodies. This combined equation is written as

follows:
Dy _ D
{SB} = [aB
[ YD, |
{s;7}
where Bl
D, _ YD
{SB} = {SBH}
ZD,
{SBl}
2D
JSBH}J
YD -1
Lapy,B1d,
‘la 17!
n -1_ BM,BM
[aB’B] = ? [aZ?
zercs
B 0 1V, }
0 [ ]
W} = |- - - v, .}
B [y 72 - BM
. 0 ?
EWBM}- | 0
mo
0
{(%%)B} = |- - - and
{3y
Xy
91
(e}
b M—

B EE WAL AR (¥.p1}

(3.4115)
’ (3.4-116)
-
3.4117)
zeros
-l
31].
‘e . ZD -1
[aBH,BH]
-
(3.4-118)
- 3G
{‘PcB} =rco- -81---
-C)‘c{(ﬁ)B}
3G, ]
[(381)
3G
3G _ M
(G5 = |G
- -
L 0 o




3.4.5.1 Isviated slender body steady lift interference flow incidence.—The inter-
ference flow incidence induced by the steady lift of an isolated slender body is comptted
using the formula given by equation (3.4-13) with the velocity components, equations
(3.4-11), computed from the solution to the isolated slender body steady lifting problem,
equation (3.4-109). These velocity components are given by

(%)D 1J (g)n (%)D
vr = I v SBJ'
BJ  j=1 FBJj °v3
(3.4119)
and
(§)n 1J (’zf)n (’Zf)n
ve =z Ve SBJj

BJ j=1 "BJ]

Y

where the quantities sB%j are the doublet distribution strengths given by equation (3.4-115)

and

. )y
(;)D 3¢,
Z BJ]
vr . - " ar
BJ] (3.4-120)
Y
Y (Z)
v(Z)D 1 “qu_
eBJj r 36

These velocity components are evaluated at the control points of all mean surface panels of
a configuration except for the panels on the interference surface of the Jth glender body.
This evaluation is carried out using the method of section 3.4.1.5. Substituting the results
into equation (3.4-13) yields the interference flow incidence on the Ith thin body mean
surface as

Y Y Y

(2)D 1J (,)D (.,)D

yA - YA Z (3.4-121)
WIi © I a .S

b4 vs .
j=1 WI,BJ1) BJ])
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and on the K'h slender body mean surface as

Y Y Y
65) Y A L I 643
¥BKK §=1 3K, BJkj By for KAJ
(G.4122)
= o for K=J

where the influence coefficients are given by

Y Y
(Z)D (z) .
3WI,BJij - Vrwl,pgij Sit (8p; - 8(93)
(3.4123)
Y
(Z)D .
-~ Vowr,Bgij €°s (8p; - 0(J1))
and
Y Y
(Z)D (Z) - )
aBK,Bka - vPBK,Bka sin (6Kk - 8(J3,)
Y (3.4124)
(Z)D

-VGB}(,Bka cos (eKk - 9(J3))

The interference flow given by equations (3.4-121) and (3.4-122) is expressed in
matrix form as follows:

D yint _ D D (3.4-125)
(g™ = fapy pIMsD)

where the interference flow is described by the matrix

ToD 7]
(vp,)

(3.4-126)

= - - -

D yint _
T¥py! =




The influence ooeff cient matrix is given by (3.4127)
[a Jeoo zeros ! [aZD Jeeo zexos
B1,Bl ' B1,Bl =
YD | ZD
zeros [aBH, BM] zeros [aBM, BM]
D -
[an,B] - Jm-—_-_—-—-—_—_ -y - -
YD .e YD e ZD
layy,p1? Cagp,pmd | [awl pm? [aWI,BM]
YD
[awn 13 [ayy, ] ' [awn pri* " [awu M|

and the doublet dlstnbutnon strengths are given by the matnix

D, .
(s} =

-

{sY“}

YD
(st

r,.ZD~
1 DBl

{S
L

(3.4-128)

}

3.4.5.2 [Isolated slender body steady lifting pressure. — The aerodynamic pressure
induced by steady lift of an isolated slendei body is computed on the basis of equations
(3.3-50) and (3.3-51). Substituting "nto equations (3.3-50) and (3.3-51). (he solution for the

Jth slender body, equation (3.4-109), leads
LJ

ZD ZD . ZD

C = - 2 un..So-.

PpJ 521 BJ3°BJ]
IZ,D (x) sin®
BJ

and

to the pressure distributions

oJ (3.4-129)
¢l = - 25 D SXD
PBJ 521 BJJ"BJ]
= - C;{D (x) cosb
BJ
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where the nondimensional velocities u%B and u?”? are as follows:

v (D
RELIRETIK (3.4130)
BJj 3%

The pressure distributions given by equations (3.4.129) vary as sine and cosine functions
of the circumferential coordinate 6 shown by figure 3.4-20. The pressure is evaluated at the
poiuts used as control points in the subsonic form of the problem, figures 3.4-15 and 3.4-18,
leading to

2D _ _2)';‘1 wZD D
Ppii S.p BJ,BJii°BI3 (3.4-131)
and
LJ
G I ”S\éD_ (3.4132)
PBJi 5=1 BJ,BJ1j " BJ]

These results are incorporated into the following matrix equation:

Dy _ D D
{CPB} = [CPMB’B]{SB} (3.4133)

Point ¢ evaluation
for Z-doublet

Point of evalu

ation ,1*\ ~
for Y-doublet |

Circumferential variatior of pressure
for Z-doublet

FIGURE 3.4-20.—SINE FUNCTION VARIATION OF Cp ON A SLENDER BODY SURFACE
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where :Sg{ is as defined by equation (3.4-128), while the pressure coefficients at the

surface points are given by

g .
{czP }
Bl
(cfP 3
D - BM (3.4-139)
{CP Y= |7
B ZD
{c, 1}
Pp1
ZD
{c, 1}
PBM
and the pressure influence coefficients are expressed in matrix form as
- D | (3.4-135)
-2 |
[ zuBl,Blj zeros ‘
. | zeros
' |
- YD
zeros ['2uBM,BM] :
D _ '
[CPMB,B] = - - —_
|
| (-2 ] 2eros
zZeros { ..
I [ ]
i A
L_ I [ QUBM,BM]
i

3.4.5.3 Isolcted slender body steady lifi induced velocity components.—The

computations for isolated slender body steady lift interference flow and pressure require the

following velocity components:

2D
BJ3

YD
BJ
YD
VI"
BJ]

YD
®pa3
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As noted in the preceding, these velocity components are computed from the velocity
potentials

. YD ZD

®gg3  and ¢pgy

and these potentials are computed from the potential for a line source as

s
YD _ _ 9¢ .
¢B.,j = -cos@ 3 BJj

(3.4137)

and
s

ZD _ .. . 9% _ |
¢pgy = SIN8 5BJj

The computations differ for subsonic and supersonic flow, as described in the following.

Subsonic Cese: In subsonic flow the velocity components are derived from the
following poteatial for a line source of quadratic strength variation distributed on the line

0<t<L:
s__ 1 [* ¢
¢ == I7 I | —d&” (3.4138)
[o)
where
R = (E'E‘)2+32:
a = fr,
and
r = Vn?+g?

Carrying out the indicated integration leads to

2 LE-X 2 X
s _ _ 1 n n 2 a . .-1 "n
¢L = o ﬁzl(-l) {Tdn - (g°- T)Slnh 5—}
where (3.4-129)
dy = Xy%+a? , d, = X,2+a?

1
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The differentiatior: indicated by equations (3.4-137) leads to the potentiais for line doublets
of quadratic strength variatior. on the line 0 <¢( < L as

(%)D B ,-cos6 2 n-l 2,
o1 * ioxC oing’ R-1 1) ‘6;[a (2g-X )

X (3.4-140)
+ szN] + a?sinh™* 52}

Introducing the following definitions for three quadratic distributions:

Y Y
(D (D

£= &5 * bpyya1
o b

(g)D (%)D
%541 = o for L = Lpgsyp @nd 5 Eg5 - Lpgs

the potentials due to a quadratic spline distribution of line doublets about the jth slender
body mean centerline segment, figure 3.4-19, are constructed as

Y Y
Y Y (,)D (5;)D

(3.4-141)
. ¢ + b.d.
SIS MRS LS 3*341

®BJ3
where the coefficients 3 and bj are given by the formulas

+ L... + L )

BJ BJj+1
)

[\
1l

_ (Lpgioy * Lpys)lgy g
+

Lpss{lpgy * Lo+
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and
_ Lpyi-1 Lpgy-1 * Lpgj * Lpgyer)
by = T (L )
BJj ‘LBIj+1

The velocity components, equation (3.4-136), for cr:mputing the flow incidence and
pressure induced by the quadratic spline line doublets are found by differentiating the

potential, equation (3.4-141), as follows:

o o
v, 2 = 3_(¢ 2y
e 3r  ?BJj (3.4-142)
Y Y
W1
eBJj r 36 "BJ]

These operations lead to the desired velocity components given by the following formulas:

Y

(,)D 2 X

Z2°7_ 1 (-cos6 a3y _ TN 2 - 2
2t ) §1< 17 (a;?[a (26-X ) +£2X ]

vy, ~ 4rr\ sin@
1 2 2
+ I [2(a +an) + %]}
Y Y
(,)D (,)D 2 2
& - 1 "2 g€ (-cos0 n 1 2
v = - = + — : T (-1)"'¢4~- s=4,[a®(2E-X)
r r'L un( 51n6) n=1 [ (dy &-X,
+E2X 1 + A(uE-3X ) + 2si h"xn
n dn F n sin =
v v (3.4143)
v(Z)D 1 -tan0)¢(Z)D
GL r cot®/"L
where, again,
dy = X3 + a%? , d, = X% + a?
Xy = ¢ ’ X T § - L

Evaluating these velocity components at the acrodynamic control points leads to the values
of the quantitics appearing in the matrices defined by equations (3.4-117).(3.4-127), and
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Supersonic Case: The vzlocity potentials ior the supersonic line doublets are derived, as

in the subsonic case, by differentiating « ic velocity potential for a source having the same
strength variation, viz.,

(E-a); (L-X(0))

S - 1 eN2 4y
OpaK = " T% I Sé_%_éé_ (3.4-144)

where

g8 = VMZI-1

£ &5 » LELpg X(o) = XJK(o)
and the first upper limit applies to region II, figure 3.4-17, and the second to region IIl. The
indicated integration is more readily carried out by writing the potential as follows:

S ) i )
®BIK 7 J % [Cg”-E)2+ 2(E”-E)E + (£)?]aE

(3.4-135)
57 [T + 261y + (E)zIo]

where for region Il

—
[#)
{1
Sy
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and for region 111

L-X(o0)
.- — 1 »
2] g
0
L-X(0) )
I, = f (ER-ﬁ)js,
0
L-X(o) )
IZ = J (ER—E)sz,
)

As in the case of supersonic line sources, a cL.ange of variable is introduced as

£°-¢ _

= cosha
a

The inteyiatio..s then follow readily to obtain in region I

=1 £
I = cosh (2)
0 a

-\(g)2-a?

T, = 3&(8)7- a? + a? cosh™ (D]

I,

and in region ill

I = cosh-l(g) -cosh—l(g — La+ X(O))

0 a

I, = - J(£)%- a? + V(E-L+X(0))2- a?

%[6\17(6)2- 22 + a? cosh™ (

)

—
[

1"
O jov

- (£-L4%(0)) V(E-L+X(0)) ~ a?

- a? cosh”

L g - L + (o)
( 5 )]
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| On substituting equations (3.4-146) and (3.4-147) int2 equation (3.4-1435), the supersonic
line source poiential is fr.. nd for region Il as:

S . 1 35,5 yf (p2+ 2 -1
*pox = - 77 (54,7 (874 Pcosh 3}
and for region 11l as: (3.4-148)
2 . kg - X 2 X
3 _ 1 o 2, &’ -i_n
®Bak T = Ir 151 -DM- ——2a + (£%+ 3 Jeosh” s
where
— ———
d, = VX3 -a® , 4, =\ x3 - a?
X3 2 & , X2 =& - (L-X(0))

The velocity potentials for the line doublets are obtained from the line source pctential

( )D ’ 3¢
_ { -cos®H BJk .
¢BJk = { swne)B Ta (3.4-149)

Carrying out this operation yields doublet potentials for region 11 as:

( )D B /-cos® !

¢BJK = o sinO){gdl - a cosk ()} (R 4-150)

O |

and for region Il as:

( )D 2
_ B ({~cos@ £ 1
¢BJK = ﬁ-( Sln@) X (~-1) {[25& (—a + a)yr‘]d—n

(3.4-151)

-1"n
IR
+ a cosh 't
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The required velocity components, equation (3.4-136). are now found by carrying out
the following operations on the supersonic doublet potentials. equations (3.4-150) and
3.4-151)

YA
(L)D ( )
u Y = = (¢
BJK X3 BJK
D y A .
er = B3z ag (q’B‘ﬁ;(l'* -;1'::i LD
BJK o
<y Zip
V. F : "%“BJK )
Bk T
The velocity components for rege. - - comnuted from equation (3.4-150) and are found
to be
Y
(,)D d,
A - B(-cos6
Ypax T ( sing/"a (3.4133)
Y
.\,(Z)D - -coss Ei‘ _ h..lg]
TRIK sin@ “at cosh 3
S0 1 raney (2
eB-J‘K cot0/"BJK
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For region I1I the velucity components are found to be given by the following:

(3.4-154)

2 E(2X_+£)
e r (-1)™{[2a - —D 3.1
né n=1 a dn

g2 n
- (282 - &—;a)xn](a-;),}

Y
V(Z)D _ 8% (-cose
2n

2
1
> I -D™MI2(g-X ) + —F]x
Ta K s:Lne) n=1 n a

X
.2 2,.2 i -1 n
+ [28a% - (E%+a )Xn](d—n-)—,"‘ cosh —5}

Y

(z

coth }J TBJK

<
[}
P’ “—a

BJK
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3.4.6 Steady Aerodynamic Induction Problem

~ 3.4.6.1 Steady aerodynamic indi:tion potential. - As shown by section 3.3.2.5. the
solution to the steady aerodynamic induction problem is expressed in terins of vorticity
distributed on the mean surfaces ' i all thin and slender bodies comprising an aircraft
configuration. i.e.,
int

(Esn:C)Kv(anaZ;Eaﬂac)dS

¢V(X’Y)Z) = f[ YO
Su

+ SB

where -yg“ is a solution to the integral equation

gint o gp 3K 4 (3.4-155)

wherein ¥ is the interference flow incidence found from the solution to one of the
preceding isolated body problems. The solution to the steady aerodynamic induction
problem. equation (3.3-29). is expressed in terms of uniform distributions of vorticity on
the mean surface panels. equationr (3.4-50), as

nl

.
v _ aw v V
b (x,y,2) = § L ¢;‘“,IJ.~(:-c,y,z)SwIi

(3.4-156)

where

The ntegril equation which must be solved. equation (3. 4-1535) is approximated by

the following aatrix expre amilar to equation-(3.4-02
(=) {3.4-157
rv - 'u‘"..l".t = -[a Trect L inT
“TRY ¢ ( By, Bwt tTawe
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where {\vé-‘{'}int is the interference flow incidence at the vortex panels and is given by each
of equations (3.4-28), (3.4-63}, (3.4-88), and (3.4-126), i.e., the interference flow incidence
induced by one of the preceding isolated body problems. The influence coefficient matrix is
given by

v - -V V4 {3.4-158)
(agy,pw! apy, gl fapy,w’d

where [35“‘,,' w is Ziven by equation (3.4-64) and

[331,31]' '[aBl,BH]
v v
v Capy,B1?"*"2py, an? (4159
fal. 23 = | - "= - Z7 -
BW,B
Lal, o deeclay. ]
Wl,Bl W1,BM
v . v
fawn,Bl [awn,ami_

Finally. the strengihs of the vorticity distributions are given by
(341600

Egg}] fts. W (S, 1]

' BL W1’
2 v _ .
w! = v . {SB} - b4

{s,} lfs

v, _ .
’ {Sw} = .
BM} {SWN}

The strengths of the vorticity distributions are found by inverting the influence
coefficient matrix, i.e.,

{SV \int = _[ V ]-lr

(=),int (3.4-161)
g’ }

Apw,BW- TBW

Substituting tie values so obtained into equatior: (3.4-156) yickis the solution to ihe steady
aerodynamic induction problem.

24.0.2 Steady acrodynamic induction pressure. - The aerodynamic pressure mduced
by the aerodynamic induction problem constitutes the interference pressures induzed by the
isolated bodics of the preceding sections when they are combined to form a configuraiion.
This pressure s computed by substituting the solution to the problem. cauation (3.3-150),
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into equation (3.3-52) Carrying out that operation and evaluating the pressure coefficient
at the geometric centroid of each mean surface panel leads to the following matr.x
expression:

¢ o int (3.4-162)
Bw, 8w’ Spw!

y int
{c } = [CPM
Ppw

The matrix of pressur? coeflicients appearing in this expression is given by

[~ . B ] [_ ]
¥y ey 3 (<!}
& - -~ - ]
R i B T Bz v ) Wl
\CD } - - - - = [ (CD }' : ’ {C; } - :
“ BW 7 ! . W .
{c; }
Pyz "I "I
(cy 3 el )
L BM L A
p— — — —
where C ?,,B.lj = ’3"l\3,Jj and CPWli = -luy\'“.
The pressure influcace coefficient matrix is given by -
v vV -
JLCcPM CPM, ..
C 3, P.] { B,u-
1164
ECPMgw o) = (34163
DRy
Ceam? ] cee? .3
LB W,
where
P = r_~.V
LC-..B,B] = LdaK,Bjkj]
reeMy ] = [-2uf. cooe.l
STPUBL,W BJ,wWIii"
v v -
NDM = -
(epty,pd = [-2upp pois)]
v v
oV = I, T 1
““w,k1 ( T WKV

and the final matrix is wdentical to the iy of pressure intfuence coetticents for the
isolated thin body steady iilting problem, equation (3 .4-08,.



3.4.7 Combined Steady Aerodynamic Problem

The development to this point has produced all of the elements which are used in the
FLEXSTAB system to represent steady aerodynamics. In this section these elements are
combined to obtain the final mairix expressions used in the FLEXSTAB system to relate
aerodynamic surface pressures to the flow incidence described by the surface boundary
conditions.

324.7.1 Combined steady lifting aerodynamics.—The steady lifting pressure acting on
a configuration is the total of the isolated thin 2nd slender body lifting pressures, sections
3,423 and 3.4.5.2, and the interference pressures. The total steady lifting pressure is

expressed as
-

F{ e
Py
v, (3.4-165)

where }CPBf is the isoiated slender body lifting pressure, equat »n (3.4-133); :C lYB: is the
interference pressure on slender body mean surfaces, equatton ¢~ 4-163): and
{ C[yw} is the combined isolated and interference thin body lifting pressure, equation (3.4-68).
The strengths of the flow singularity distribution giving rise to the total pressure are
expressed as _
ts2y]
B
(3.4-166)
(s} = |{s}}

v
| (s}

-

where }SB% represents the strengths of the line Joublet distributions, equation (3.4-117):
:SB : the strengths of the vorticity distributions on slender body mean surfaces arising from
interference flows, equation (3.4-160); and :S‘\‘,,: the sum of the vorticity distribution
strength from the isolated thin body lifting problem. equation (3.4-56), and those arising
from interference flows, equation (3.4-160). Finally, the lifting pressure is given by

{cp} = [CPMI{S} 34167
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where

D
(CPMB,B] fol
[cpM] = D v
[CPMBW,B] [CPMBW’Bw]
wherein [CPM;';w Bw] is defined by equation (3.4-164) while
?
reeM? 1
D B,B
[CPMBW,B] z 0
[CPMW’B]
where’ teem? 07 = [0 and [cpxl 1= Freew J]
- “'W,B ' “‘B, B L~ BJ,BJ
3 D - £ T - [T B
since [CPMBI,BJ] = [0] for I#J, equation (3.4-135)

Th: relationship between the singularity strengths of equation (3.4-166) and the flow
inciden ‘¢ at all cc 1trol points in the lifting problem is given by

{¥' } = [ATCI{S} (3.4-168)
where _ ;
w D
@2
@Y= [l
v V
4
and r- - | —/
- o
LaB,B] zercs
[a1cl = |- - - = - f— — — — —
D R
[aEY.'.',E] I L;—Brr,sh]
- -

The partitions of the matrix [AIC] are given by cquation (3.4-11 7). equation (3.4-127). and
the influence cocfticients of the acrodynamic induction problem. equation (3.4-159). Equa-
tion (3.4-168) represents the basic steady lifting acrodvonamic intluence coefficient reiation
of the FLEXSTARB system: however. the term “acrodynamic influence coetticient™ is
reserved herein for the refationship between litting pressure and flow incidence.



The ac:odynamic influence cnetficienis are found by combining equations (3.4-167) and
(3.4-168) as follows:

{cp} = [Lscl{¥'} (3.4-169)
where
[LSC] = [CPMI[AICY™' (3.4-170)
and . | -
[ag B]- zeros
[aicl™’'zs |- — — — — — — — 4+ -

v -1, V ar. D o1 v -1
-lagy mwd Capy,pllap,p! | [2py,pu!

The 'nterference flow incidences must vanish at the mean surfaces of slender bodies; thus,
the flow incidence matrix {\ll'}is reduced by deletinﬁlthe elements {‘l’v } . Also, the columns
of the matrix [ LSC] multiplying the elements of {\l’ are deleted from the [LSC] matrix.
These operations lead to the combined lifting solution expressed as

{CP} = [Al{y} 34171

where, from equations (3.4-56) and (3.4-115),

¥} = - (7 -0 (T + @ ) (3.4172)
with [ -1 [ ]
W) {Vg)
(W)= v} =

i v}
| W W

and R ]

¥ op)

S
o

Equation (3.4-171) yiclds quantities from which the entire Lifting pressure on an aircraft
confizuration is determined from the steady part of the flow incidence. Following the irethod
of reference (1-1), the thin body partition of equation (3.4-172) is evaluated for flow inci-
dence at pancl centroids even though equation (3.4-108) is evaluated tor tlow incidence at

the panel control points. This arrangement has been found empirically to yield a better
approximation than when equation (3.4-172) is evalwited at panel conirol ponts.
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3.4.7.2 Combined thickness aerodynamics.—The pressure induced by thin and slend-;
body thickness is expressed in two parts—the pressure induced on the isolated bodies,
sections 3.4.2.2 and 3.4.4.2, and the thickness interference pressure. The isolated thickness

pressures are expressed as —

P S .
{c }150
Pp

S,iso _
G} = S i 3417
}1so (3.4-173)

where ‘CIS’B} is given by equation (3.4-93) and {C]S>w} is given by equation (3.4-35). The
thickness interference pressure is found by substituting into the acrodynamic induction
prablem, i<.,

VV

Vv -1,,S ,aint
BW,BW][aBW,BW] {wa} » (3.4-174)

{cg 310t - _rcpM
BW

the interference flow incidence induced by thin and slender body thickness. equations (3.4-27)
and (3.4-87), i.e.,

S ,int S S
3 = 1rpS1(sS)

(3.4-175)

{s3}

S, _ S cs LS Sy _ cs
{TD"] = ([aBW,B][aBW,W](aBW,W”’{S } o= {s w}
(")




3.4.8 Ilsolated Thin Body Unsteady Lifting Problem

In section 3.3.2.6 the solution to the isolated thin body unsteady lifting problem is
expressed in terms of vorticity distributed on the thin body mean surface, equation (3.3-35), an¢
the vorticity distribution is required to satisfy the integral equations given as equation
(3.3-34). The vorticity distribution v, is that determined in the steady form of the problem,
section 3.4.3; and, I'ke the distribution y,, the distributions 7|, 75, and y3 whica introduce
the effects of unsteady flow are assumed to be uniform on each panel, viz.,

’
R
Y1 (Erionps) = Syrs
2reane) = SY2. Vo for £ .on.. ins
*1ioM1i WIii 1i*Mri M Syrs
V3
Y (Eriongy) = Syupg

y

Having introduced these approximations, the unsteady velocity potential is given by

nI Vl V1
da1 X Yps2p) = lzl["’ml WIi 32(X1¢w11 WIi
X1y
Vo V2 1
- buriSwrid - E"{ "’wn wn de- ’wn (3.4-176)

where
v oo_ .V o, , ,
¢WIi - JJ K (XI’YI’ZIaEIi,ﬂIi)dEIiani
SWI'
i

and the integral equation (3.3-34). in terrs of the influence functions introduced by
equation (3.4-53), become as follows:

nl

¥ T av. .Sk
= a
WI/U T D WIS (3.4177)
nT
: _ vov2
*furiu 7 E Wit
X
and nl 1 nl
v V1 voLV3
lflff awri (X YDAy 7 T ayrsSur
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where ‘I’\“’q is given by equation (3.3-36).

Equations (3.4-177) are evaluatec at the control points of the mean surface panels, and
the results are expressed in matrix form as
1 { «

gltur! = [WIWI]{S 1t

LoV yeV 3 - 7.V V2
olXerd Py} = lagg ypliSyrl s

and

eV Vi _ .V
- Uaygr wrd Syt = lagr,ur ]{S }

where the matrix l‘XV 1 contains the Xj-coordinates cf the panel control points and the
matrix | fam Wl] is formed in the same manner as [an Wll but the clements are the
result of evauating

(XI v (3.4-179)

at the panel control points. The, solutmn to the problem is constructed by solving equations
(3.4-178) for the values of ‘Sw IS\VI’ and ¢SWI | and substituting the values so
4etermined into equation (3.4-1 76

The solutions to equations (3.4-178) are formulated for N thin bodies in a configura-
tion and expressed in a single matrix equation usmg the notation of equation (3.4-56) as

follows:

(sy )= lay (I 0N

(3.4-180)

V2, _ v -1p,V 1
(8%} = [ay 27 X360

and

V3 - -
(5" = -lay 37 [fay i0a) 1700 50



Hhere B [x;’u] zero;

(3.4-181)

AR

XV
L—Zeros [ w»N]-J

with the panel control point coordinates expressed in the Reierence Axis System.

3.4.8.1 Isolated thin body unsteady lifting inier/erence flow incidence.~Each of the
vorticity distributions whose strength is determ'ned by equations (3.4-180) induces an
interference flow. These interference flows a’ the panel control points on the mean surfaces
of all thin and slender bodies of a configuration are obtained by setting up equations
(3.4-180) and (3.4-181) in the form which thuy have prior to solutitbn. These equations are
expressed in terms of the panelson all N thin and M slender bodies of a configuration and
appear as fcllows:

AN v v V1, (3.4-182)
1 {'i’B} ;[aB,B][aB,w] {SB }
U- -V = \Y v V1. s
‘[‘l’w}-1 [aw’B][aw,w] {SW }
o r \'j vV
1 tx‘éi ol ‘I r{'-l’\é} [aBsB][aB,W] {S\éz}
1] z ,
V. oV \) v V2
(07 B | |odg L[aw’B][aw,w] (=37
and
[ V1, v v V3
[fag gllfag 3| [{cg? lag p1lag 3| | f55%)
vi,| v v Vs
[fay glliay 4] (s, ) CHINS | EPe | I REVE
e _J i

. . e . . : Viint
The interferen. ¢ ow incidance may now be obtuined by determining I\PB| aad the
require d interfer-pee vorticity strengths.

ye atternative approach, not used in the steady lifting problem, follows from setting

the rates of chiange of flow incidence at the mean slender body surfaces to zero and solving
fe; the res tting vorticity distribution strengths. This operation vields the streng, s required
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' to represent the isolated thin body lift including interference eft:cis. The operation is
deferred, however, to section 3.4.10 where the effccts of isolated slender body unsteady lift
are also 'nciuded.

3.4.8.2 Isolatea thin bodv unsteady lifting pressure.—The aerodynamic pressure
induced by the isolated thin body unsteady lift is computed on the basis of equation
(3.3-53). Substituting the solution for tiie 1Ith thin body, equation (3.4-176), into equation
(3.3-53) leads to the pressure distribution expressed as

v _ 8y oy MZ.. vV V1

CPWI = -2 f_ lugrsiSurs * EzthuWIiSWIi
= (3.4183)

vo_V2 1.V V3
- = 1
-~ UyriSursd T 32%riSurs
where ‘
WIL T §§;d 19¥71
WIi

Evaluating the lifting pressure distribution, equation (3.4-¢6), at the surface of the thin
body results in the matrix expression

V3

u? V1
P, ITCM IR PasTge SMR TEMAY

g2 (3.4-184)

{C [CFM

W,W

- chmx,w]{sxz}) . %atcpnx,wl{s&3}

where the matrices ICX\‘ ! and [c PMW w1 are given by equations (3. *-69) and (3.4-/0) and
fXWJ contains the coordinates of the poiats where the pressure is evaluated. i.e., the panel
geometric centroids.

4.8 v oated thin body unsteady lijt induced velocity components. - 1he velocity
compone: t; iixduced by the uniform vorticty distribution on a panel are consjuered in
sectior. » ..3.3. It remains. howcever, to consider the clements of the matrices contained in
equations (3.4-182) which are obtained by evaluating equation (3.4-179), i.c..
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J ” aKv

XJ X

o -

Q »
“WIi

X
- COS(GJ'GI)J J ” £<—CIE ds

Swri

(3.4-1635;

whe:. KV is the potential for an elementary horseshoe vortex (ref. 2-3, equation 5-35) and
3 is the dihedral angle of the mean surface panel where cquation (2.4-185) is evaluated,
dunoted as 07 in figure 2.4-3.

Expres.ed in the Incal panel axis system fizure 3.4-3. the potential induced at the
point £,~.5 due to an elementary horseshoe vortex with bound element at £, — O is for
subsonic flow (page 87 of referenc> 2-3):
KY(E,n,z3E, /) = & 4 {1+ Sl Y (3.4'86)

4
S —
(n-n)2+ ¢’ ’75-a>2 + B%r? .

and for supersonic flow (page 87 of reference 2-3):

2 =y . 1 £-E) 1
K'(g,m,%58,m) ¢ 57 ele=t — |- (3.4-137)
Y v - n
(n-n)2+g? | " (£-E)2-g%r?
where
rt o= (n=m)? 4 g7
Equation (3.4-185) contains the quantities
X (1 v
I v _ J 3K .
=S (3.4-188)
WIi
and
r
"X v
v .Y f %%—d&'d
WIi ~ J J
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which are obtained by oper...ng on the potentials given by equations (3.4-186) and
(3.4-187). The poteatials are tint Jifferentiated with respect to np and § and then integrated
twice with respect to £. In subsonic flow. one of these integrations is carried out using the
leading and trailing edge coordirates of the pancl. figure 3.4-5_ as the limits of the integra-
tion. In the second integration the limits are £ = -0 and the ¢ coordinate where the influence
of tl.2 panel is evaluated. In supersonic flow the first intezration is carried out over only that
purtion of the - . .el which is contaiied in the Mach fore cone of the intfluenced point—the
po tPshowi: ¢ rigure 3.4-11. The panel is divided mnto two regions (1 and 1) as shown by
fige~ 3.4-21 and the limits of integration extend only from the panel leading edge to the
lin. of intersection “ctween the panel and the Mach fore cone in region 11.

Subsonic case: In subsonic flow the above operations reduce equations (3.4-188) to the
following expressions which are evaluated by numerical integration over the 5 coordinate:

) b - . -
T = > _gtaid (£ )2+ (E-£ )V (E-£)7+82r2}d7
Il 3 Jo [(n-ﬁ)z‘!‘(:z]z 1 ES

(34189
- b =) ggr2e(e-g, )V (g-g ) 242p2 bR
Iv _1 E z(n-n) 2 _ _ 2,022 =
Wi * [ () 2ot Veg-£,)7+8%0% 1an

O

(3.4-199)

£

H r(n-n 2,.02..2155
- i Ib s_(ﬂzﬂl{r_g_gld)h(g-g[‘) V (g-£;)2+8%r*}dn
o r
. . N .. IV
Supersonic case: In supersonic tlow the contributions to the quantitics v and
!w\\"li trom regions | and 11 are obtained by numerical integration of the following
expressions:

Region I:

ne Z(n-n)(E-2.)
{ = Vig-z_)2+3202}7

N
) r
i (3.4-191)

[nz 2(£-8,)(n-1)
) n Vig-z,)2-g%r2a

7
- L

=1

3141



Iy = L Inz[51‘:132—‘5-2-}(5_-5T)\f<e-£1.>2-32r2dﬁ
, |
1

-£.)
) %_ Inz 822 €3 & an
T " r* V(E-ET)2-82P2

N2 p2 _
+ %—,,I S Lnjg-g+ Vig-£,)2-82r? |dn
n:
(3.4192)

+
Pt
=

Inz [M] ( g‘..gL)V(ig_gL) 2 -girzd“

r*
ni

n2 )
2,2 (g-£;) _
. %_"l B¢ L aF

['Y
mov V(g-gL)z-ezrz

N2
2 -
- !2"7 I s— LnlE-E-‘ + V(g-EL)z-Bzrzldn

m
Region 11:
N2 _r(n-n)(E-E,) _
) i :E_[ e V(g-g, )2-8%r?  dn
Ugyy = 27 & L
WIi nl r
(3.4-193)
n2 -2 2 _
IWV L= LI [(T\-n) -C ](E'ar) ﬁE_EL)Z_BZPZdn
Wl 2T n op L
(3.4-194)

nz2 ]
¥ %? l g—z{Ln,Brl—Ln!E-gL + J(E‘EL)Z-Bzr‘zl}dn
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FIGURE 3.4-21.—REGIONS OF INTEGRATION FOR VORTEX PANEL IN SUPERSONIC FLOW



3.49 Isolated Slender Body Unsteady Lifting Problem

In section 3.3.2.7 the solution to the isolated slender body unsteady lifting problem is
expressed in terms of line doubleis distributed on the slender body mean centerline,
equations (3.3-39) and (3.3-41), and these line doublet distributions are required to satisfy
the integral equations given as equations (3.3-40) and (3.3-42). Letting line doublet
distributions have the form introduced in section 3.4.5 for the two cases, subsonic or
supersonic flow, the solution to the present problem—equations (3.3-39) and (3.3-41)—is
approximated by the following expression:

YD LJ YD YD 2 YD YC1 YD YD2

L M _
¢pg = g:l{¢BJjSBJj+§T[xJ¢BJjSBJj *B735BJ3

11

(3.4-195)

ZD LJ ZD ZD M2 ZD ZDl1 ZDb 1ZD2?

¢pg = §=1{¢BJjSBJ3 “{XJ¢BJ3 BJ5 ®B755B5

11

where ¢B 3 and (b%g are as defined in section 3.4.5.

The integral equations, equations (3.3-40) and (3.342), which must be solved to
determine the doublet distribution strengths, are expressed in terms of the influence
coefficients given by equation (3.4-113) and appear as follows:

1 -YD _ YDl
g ¥p5! [aBJ psi{Sps }

1 gD g YD

g ExBJiﬁyBJ} [aBJ BJ]{s }

1 ZD ZD1 (-4196) -
U{ } = [a g7, BJ]{SBJ }

1 xD g 2Dy _ 2D ZD2

T IEXBJJB' BJ} = [aBJ,BJ]{SBJ }

where the matrix [XBDJ,I contains the Xj coordinates of the line doublet control points. The
solutlon to the %roblem is constructed by solving equations (3.4-196) for the values of
SB}:’.[ggBJJ BJj ’ nd SBJ and substituting the values so obtained into equations

Equations (3.4-196) are expressed for M slender bodies of a configuration using the
matrices introduced by equation (3.4-117). The result is as follows:
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l D1, _ ¢.D Dl
L@l = e pushh

B,
and
(3.4-197)
1 g DareD2, _ .D B2
& EXB1 2%} = [ap p1sp’)
where
D
X 3
[Xpd  zero (3.4-198)
£xpd = ..
D
zeros EXond

BM

and the diagonal elements are the line doublet control point coordinates expressed in the
Reference Axis System.

3.4.9.1 Isolated slender body unsteady lifting interference flow incider:ce. —Each of
the line doublet distributions whose strength is determined by solving equations (3.4-197)
induces interference flow incidence at the mean surfaces of the thin and sleider bodies of a
configuration. The interference flow incidence is evaluated at the contre: points of the mean
surface panels. The result is expressed in terms of the influence coeff.cient matrix given by
equation (3.4-127) as follows:

1 Dl,int _ D D1
T {‘PBW} = [an,BJ{SB }
(3.4-199)
and
1 Y/ D2,int D D2
= ¢l -
where
(3.4-200)

Exgd [0 ]
txV1 = -
o1 tx3

and the diagonal elements ot this matrix are the coordinates of the mean surface panel
vontrol points expressed in the Reference Axis System.
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3.4.9.2 Isolated slender body unsteady lifting pressure.-- The acrodynamic pressure
induced by the isolated slender body unsteady lift is com uted on the basis of equations
(3.3-54) and (3.3-55). Substituting the solution for the IR glender body, equations ¢3.4-195),
into these equations leads to the pressure distribution expressed as follows:

v
v YD YD M? YD YD1
Cppg =-2%_ lupysSpyit— [X5up555m53
j=1 2
YD YD2 YD1
-Upr558g57 * 'T ¢BJ3 BJj!
(3.4201)
£J .
ZD ZD ZD L M ZD .ZD1
I LI
Cpag * 2’]5 1‘uBJjSBJj * a2 (X up555Ra5
ZD ZD2- ZD 2Dl
-up755Bs57 Ty ¢pg55Ba3

where ug}) and uZD are given by equations (3.4-130) and (3.4-131) while q)YD and d%}) are

given by cquatlons (5 4-115) and (3.4-116) in subsonic flow and equivalent express:ons in
supersonic flow, see section 3.4.5.

The unsteady pressure induced by the line doublets is evaluated at points on the
slender body surface exactly as in section 3.4.5.2 for the case of steady flow. The unsteady
pressure induced at these points is expressed in terms of the matrices of section 3.4.5.2 as

{c } [CPM J{s } + — [Dx JtCPM ]
a2 B,B
2 D D1 1 D D2
- r_«; wB,BD{SB } - —B?[CPMB’B]{SB }
(3.4-202)
where — —\
[¢g B] z T [d)YD ] Zeros
’ 8M, BM
[¢2D 1
B1,B1
zZeros °,
[ ]
B %M BM-|
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and the matrices on the diagonal. i.e..

YD . (.YD
Copy, B3 = Lop; pgij)
and (3.4-203)
ZD _ ¢ ZD
Cops,Bsd = Cep5 pyislo

contzin the surface point values of the potentials given by equations {3.4-115) and (3.4-116)
or their equivalents in supersonic flow. The matrix I‘XBJ contains the X coordinates of the
points where the prezsure is evaluated in the Reference Axis System.

34.9.3 Isolated slender body unsteady lift induced velocity components.—No
additional velocity components beyond those used in constructing the solution to the
steady flow problem, section 3.4.5, arc required in this section; however, the values of the
potentials induced by the line doublets are needed to compute the isolated slender body
unsteady lifting pressures, section 3.4.9.2. As in the case of steady flow. section 3.4.5, the
line doublets are distributed differently for subsonic and supersonic tlow.

Subsonic case: In subsonic flow the potential due to one component of the quadratic
splines, figure 3.4-19, is given by equation: (3.4-140) and the potential for a spline found by
superposition in the manner of equations (3.4-141), i.e.,

yA Z,.
¢(Y)D(€Jk) (D Y )
BJk = 0pgk-1'%0k * Dprk-1
(3.4204)
) &
tagene Gnd * bdprker Coxlradd

Supersonic case: In supersonic tiow the potential induced by the k'™ line doublet is
given by equation (3.4-15) in region 11, figure 3.4-17, and by equation (3.4-151) in region I11.

3.4.10 Unsteady Aerodynamic Induction Problem
JH4.10.1 Unsteady Acerodvnamic Induction Potential. - As shown by section 3.3.2.8,
the solution to the unsteady aerodynamic induction problem is expressed in terms of

vorticity distributed on the mean surtfaces of all thin and slender hodies comprising an
aircraft configuration, i.c..
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¢g§t = I Yo"tk ds + E; [x Ij Tlintdes
SW+SB sw+sB
_ ” Yintdes]- _1__[Jx IP Y];‘ntKVdsdE
2 g2 )
Sy*Sp ™ 5*Sy
r
- J[ Yintdes]

Sw*Sp
where the interference vorticity distributions are required to satisfy the integral equations
given by equations (3.3-44). The vorticity distributions on each mean surface panel are
assumed to be uniform as in the case of the unsteady thin body lifting problem in section
3.4.8; the solution to the problem, equation (3.3-43), is expressed as

N nl

uv _ v v I‘ﬁ v vl
O3t (%syszs) = L T {ogrsSyg; * 02 (y1isuti
I=1 1=1
(3.4-205)
v v2 1 X v vl vV .V
" SwriSwri)- E;(!_m¢w115w11'¢w11°w11)}
M mJ 2
+ 3 T {e¥..sV. .+ Mgy sV
J=1 j=1 *831%83; g 18137833

v v2 1l Y vl v v3
SBJj)- ‘_(I %8755875 835873}

The integral equations which must be solved, equations (3.3-34), are 2xpressed in terms
of the influence coefficients appearing in sections 3.4.6 and 3.4.8 as follows:

1 gV _ v vl,int
Wow! = Cagy, 5l Sai)
LEXS A Y 5 agy g 0sEiHTE 342
U BW BW BW,BW B (3.4-200)

v vly, _ \Y 1 raV3iint
[faew,ew]{sew} = = lapy pyiliSay
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where [f 2wp WBl contains elements obtained by evaluating the expressions
X .
T .V
J aV s (€, ,27)dE
and

X
J .V
I . aBJj(E,YJ,ZJ)dE

at the mean surface control points.

The strengths of the vorticity distributions are found as follows:

vl,int _ v -1 1
syt = lagy 17 YUY
(3.4-207)
vZyint _ 1
{SBW} = [an BW] D(BW] NBW T
v3, _ v -1 v =“l,yVv 11
Spyt = -lagy, gy? [I gy, 3w 2B, Bl (VB O

e mally, the solution to the unstcad aerod) namlc mductlon rroblem is obtained by

V3
substituting the values of SWh’ SB SWh’ SBJ_] SWh and SBJ so determined into equation
(3.4-205).

3.4.10.2 Unsteady aerodvnamic induction pressure.—The aerodynamic pressure
induced by the unsteady aerndynamic induction problem constitutes the interference
pressure induced by the unsteady isolated problems of sections 3.4.8 and 3.4.9. This
pressure is computed by substituting the solution to the problem, equation (3.4-205), into
equation (3.4-44). Carrying out that operation and evaluating the pressure at the geometric
centroids of each mean surface panel leads to the following matrix expression

UV int v v M2 Y v vl
{p-¥Y = [rD) {g’ 1 —_— Mo, B
b S “’“4BW,BW-‘]"EW’ * Bz[EXBWJ[CP' BW ”grw}

(3.4-208)

v v2 l_ oMY v3,
- [erMgy gyl {Sgytl + B2[C‘MBw,Bw]{SBw’
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where the matrices SC},J V: int and | CPM\YIB WB] are formulated as shown by
equations (3.4-163) and (3.4-164) and the matrix (‘X‘“’,BJ contains on its diagonal the
coordinates of the panel area centroids expressed in the Reference Axis System.

34.11 Combined Unsteady Aerodynamic Problem

The preceding development provides all elements used in FLEXSTAB to represent
unsteady aerodynz:aics. In this section these elements are combined to obtain the final
matrix expressions used in FLEXSTAB to relate aerodynamic surface pressures to the
unsteady flow incidence described by the surface boundary conditions.

The unsteady pressure acting on a configuration is the total of the isolated thin and
slender body lifting pressures, sections 3.4.8.2 and 3.4.9.2, and the interference pressures.
The combined pressure distribution is expressed in terms of equations (3.4-165), (3.4-166),
(3.4-167), (3.4-184), (3.4-202), and (3.4-208) and appears as follows:

(c,} = [CPMIE.) + !;{(tnx;[cpul - 2P yeshy

2
B M (3.4-209)
- [CPM1{S?}} + -1—2—[CPM]{S3}
B
where
tx21 1 [0)
B |
toxd = - T ? - —v- B (3.4-210)
[ol : [XBWJ
the coordinates of the points where the pressure is evaluated, and
D !
(o557 , [0
Dy |-——-=-d4- -~ ~
[¢7] = ' (3.4211)
{01l I [o]
i

The flow singularity strengths appearing in equation (3.4-209) are given by equation
(3.4-168) and the following expressions

1 - -l"l
{s'} = [AIC] ~(¥ }U , (3.4212)

{s2} = rarc) iroxagt, (3.4-213)
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and

{s%} = -[AIC]-l[Ja][AICJ-l {\1"‘}% (5.4-214,

where [a] is given by equation (3.4-169),
(03! o1 ' o1 ]

- ' v v "
[Ia] = el , [IaB,B] [IaB w] (3.4-215)

— e — e —— e A - e

-i v | v
‘ 01 tfay 51 ) Cay
Combining equations (3.4-209) through (3.4-215) leads to the solution to the
combined unsteady aerodynamic lifting problem as follows:

{cp} = [LsCI¥ "} + [5Lsc]{q,'}%

(3.4-216)
h 2 -
WHere reLscy = M—z[(EDXJ[CPMJ - LrePnraTer™
8 :
(3.4217)
-1 1 -1 -1
- rcpmifarc1 teoxd] - -[cPMILAIC] [Ia][AIC]
)
Deleting the elements \,’/X from \{.1' and deleting the corresponding
columns from the [§LSC] matrix leads to
{cp} = [AM(-) (@Y~ O {7} + {¥.})
13.4-218)

v [8A1(-0R (@} - X (V1) 5

where [6A] is the reduced form of [6LSC], i.e., the columns of [6LSC] multiplying{\l"é}
are deleted. This reduction corresponds to the reduction of [LSC] to the steady aero-
dynamic influence coefficients [A] of equation (3.4-171). Also, the flow incidence as well
as its rate of change follows from equation (3.4-172).
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Equation (3.4-217) yields quantities from which the entire viusteady lifting pressure on an
aircraft configuration is determined from the unsteady flow incidence imposed by the
boundary conditions.

The pitching wings, figures 3.2-10 and 3.2-11, used in section 3.2.8 to demonstrate the
accuracy of the low-frequency approximation, are used here to illustrate the application of
equation (3.4-217). The geometries of the pitching wings are described in the form

G(X,Y,Z)=0

and, expressed in the Fluid Axis System, appears as
iwt

flx,z,t) = z-(.5-x)e = 0
The flow incidence at the wing surface is found as
¢ - L2f, 3f
T U 3t 9x
or ¥ = [l-i(.S—x)%]elmt
and the rate of change of flow incidence, to tirst order in w/U, is found to be
1y _ 0w _lwt
-U—‘y = 1 €

Substituting the matrix equivalents of these equations into equation (3.4-217), a matrix of
complex rressure coefficients is found as

{ch} = [AIC{1} -iC.5{1} -{x)) 8T + i8L6a)(5)

Separating into recl and imaginary parts,
Re{cy} = [al{1},

i.e., the lifting pressure coefficients for the winz having plunging velocity, w = -U (chord
lengths/second), and

In{Cp} = -[A1C.5{1}-{/DY + [sa(132

The first term of the imaginary part contains the litting pressure coefficients for the wing
having a steudy pitch rate Q = U (radians per second ), and he second term contains the
lifting pressure coetficients for the wing having a plunging a:celeration w = -U2 (choru
Iengths/(second)z).
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3.4.12 Leading Edge Thrust Correction

The FLEXSTAB system contains a correction to the drag force induced on lifting thin
bodies. This is a leading edge thrust correction analogous to those usually encountered in
the theory of thin lifting surfaces, e.g., reference 3-9, pages 147-148 and 218-223. The
correction accounts for the fact that the linear aerodynamic theory of section 3 is not valiu
in regions where the flow changes rapidly in the x-direction as near wing leading edges. The
correction used in FLEXSTAB is demonstrated in © : following for the case of an infinite
aspect ratio flap plate at angle of attack in a subsonic flow. The correction is then developed
for the case of arbitrary thin lifting surfaces.

3.4.12.1 Lcuding edge thrust of a flat plate in subsonic flow.~The leading edge thrust
correction. contained in FLEXSTAB is illustrated by considering tne pressure distribution
induced by subsonic flow over an infinite aspeci ratio flat plate at angle of attack to a
subsonic flow. The leading edge thrust correction usually encountered n the theory of thin
liftir., surfaces, references 2-3 and 3-9, is described and then ths leading edge thrust
correction used in FLEXSTAB is described showing the contrast with th:in lifting surface
theory.

Figure 3.4-22 shows the lifting pressure distribution induced by the vorticity distribu-
tion producing a flow satisfying the brundary conditions of the flat plate, case 1. This
vorticity distribution is given by the formula

y = & V== (3.4-219)
Vi '

and is scen to become infinite in the region of the leading edge, i.e., as x tends to zero. The
lifting ¢  ‘sure is given by

AC, = C, -C

(3.4-220)

V1-M2 *

Integrating this pressure distribution over the surface yields ihe following section lift and
drag coefficients:
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Ac Flat Plate Load (Moo = 0)

t. o—-\
40 - o 1

35

=

™)

20

Exact, AcP=4aV’!-TX a=1

Computed by FLEXSTAB system

Lift and Moment*® Coefficients

1 6.283 0
. 2 |s147 | 0085

10 —

*Positive “ncse-up”’

0 .5

FIGURE 3.4-22.—LIFTING PRESSURE ON A FLAT PLATE

3-154



I ———() Exaxt, Ac,,=4avi-—%—. a=1
4 LL

(20 Computed by FLEXSTAB system

e

-25

FIGURE 3.4-23.—APPROXIMATE FLAT PLATE CAMBER
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Z coordinate of integrated downwash

2 _ =
Values for 1/2 PUG, =1, Xve- Xee=1

For fiat plate For integrated downwash

Panet FLEXSTAB Camber Drag on Camber Drag on
no. load increase segment increase segment

1 22.378 -1 2.2378 .1780
2 9.8097 -1 980 -1130 1.1089
3 7.1987 -1 7199 -.0967 59%1
4 5.6305 -1 .5630 -.0977 5501
5 45558 -1 4556 -.0981 .4469
6 3.7255 -1 3725 -.0984 .3665
7 3.0280 -1 .3028 -.0985 .2983
8 2.3975 -1 .2398 -.0u8sS .2363
9 1.7785 -1 1778 -.0984 1750
10 1.0874 -1 .1087 -0979 .1065
Totals, I.’ADi = 6.1590 Zan; = 0.0000

EADi . FLEXSTAB value of drag _ -0.U633

{sum of boxed values)
FLEXSTAB

FIGURE 3.4-24.-DRAG ON IMTEGRATED DOWNWASH VS CAMBER ANALYZED
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The non-zero section drag coefficient is not consistent with inviscid flow theory and arises
because the linear theory iaiks in the ~egiun of the leading edge where perturbations to the
flow velovity are not small. Following the method of reference 3-9 (pages 147-148 and
218-223), a leading edpe correction is computed which just balances the drag. viz.,

2na?

a V1n2

This correction is computed by a Limiting process involving the infinite prasstire at the
leading edge.

c

In the FLEXSTAB system the lifting pressure given by equation (3.4-220) is approxi-
mated by the step function shown as case 2 in figure 3.4-22. The lifting pressure is finite at
the leading edge so that the limiting proc: ss alluded to above vields a leading edge thrust of
zero. The leading edge thrust cerrection ir. the FLEXSTAB system is a geometric shape
correction. The downwashes induced at th: flat plate by the two vorticity distributions. i.e..
cases 1 and 2. are shown by figure 3.4-23. he downwash computed by FLEXSTAB satisfies
the boundary conditions at only 2 {inite number of points: hence. the FLEXSTAB solution
yields a surface which approximates the boudary condition surface--the flat plate in this
case. If the lifting pressure shown by case 2 of figure 3.4-22 is applied to the surface
obtained by integrating the downwash with nspect to x, the FLEXSTAB solution will vield
lift and drag {orces consistent with the bound.ary condition surface approximation. In this
computation, the section drag for the infinite aspect ratio flat plate is found to be zero. The
surface found by integiating the downwash. hewever. as noted. is not that of the flat plate.
and the FLEXSTAB leading edge thrust correction is a correction from the surface
appearing in the boundary condition there. the flat plaio) to the surface obtained by
integrating the downwash.

34.12.2 Surface correction at the leading edge pancl.— If the downwash from the
FLEXSTAB approximate solution for the flat plate is integrated. figure 3.3-24. the surface
generated closely approximates the flat plate except at the leading edge panel. If the drag is
computed assuming the pressure to act on the tlat plate. the value of section drag obtaine:d
is Cq = 6.1950 - nearly the vatue 2= obtained from equation (3.4-220). If the pressure is
assumed to act on the integrated downwash surface. the section drag value computed is
Cy4 = 0. Corr.cting the leading edge panel shape leads to an approximation yiclding Cy =
-0.0633. This approximation is accepted for the FLEXSTAB system. and the lifting
pressure is assumed to act on the boundary condition surface in all arcas except at the
leading edge panel where it is assumed to act on the surface obtained by integrating the
devnwash.

34123 Leading edge correctiom for arbitrary ligting thin bodies.  The correction
procedure described above is valid not only tor infinite aspect ratio surfaces but also for the
thin bodies used in FLEXSTAB to represent an aircraft contiguration. The lifting pressure at



the ladmg edpe panels is assumed to act at the surface generated by integrating the flow
incidence: ‘it the remainder of the thin body the lifting pressure is assumed at the actual
mean cx.r: er surface of the thin body.

Th ' incidence penerated by the flow singularities of the acrodynamic representation
ceatains incidence arising from motion of the dody Axis System relative to the Fluid Axis
Systzmr.:ection 2.2.3; this incideace, describing a change in direction of the apparent
freestn.aza. is not included in the surface shape generation.

'\[M ‘orce in the x-direction of the Relerence Axis System at the ith leading edge vanel
o the I thin body. figure 3.4-25. is found as

i
vV o _=apV V.o,V (3.4-221)
Dgri =-98Cp . Cogri—8vyr;)d6byr;
WIi X
LWIi
wher:
i;’)wﬁ is the panel span

Lwhi. XTwhi are the coordinates of the panel leading and trailing edges along
: the pan:l row centroid. figure 3.4-6

v
e is the component of perturbation velocity aloag the (normal)
ceordinate, figure 3.4-3

\)
AWwWii is the nonnal component of perturbation velocity due to motion
‘ of the Body Axis System relative to the Fluid Axis System.

Carrying ouvt he integr. tica results in

\ - I v Iv .
Jors = QA LWy s=A Weae s Cpyr s JEpsm
Wli P .. CWIi WIi WIJ.] T
WI:
where
v Y
. {”Twli
-7 L. 3,-:08,Y,.,2::)358 -
. - v - J..:..'-. 0o - - -
and the ch v.0 of the panel is given by
~ =\ -



po

Panel row centroid
X, ¢— —
Xpwii —™
) «
—~—\~—————-——-- ~— Xwi—]
byt
Leading edge panel Yy

FIGURE 3.4-25—THIN BODY LEADING EDGE PANEL GEOMETRY

A matrix of integrated flow incidences is formed as
{w] } = [IDMI{S}}
where W (3.4-222)
[ipM] = [- IC a.w".Ij (E,Yy;,2p;)dE]

WIi
where :SX: represents the vortex panel singularity strengths at thin bodies. This matrix is

combined with partitions of zeros to conform with the solution to the combined steady
lifting problem. section 3.4.7. equation (3.4-168). This operation leads to the expression

{WI} = [ISC_E, e}

or {w,} = [ISCy1{¥} 3.4223)

where

eI U0 3} razcy?
(6] [1DM]

The matrix [ISC | is reduced to the matrix [§SCy | eliminating the columns multiplyving
{&Xl containcgr in {g’:'} but not in {;,’4 }. c.l.. equation (3.4-218). Using this result, the
leading edge panel force per unit pancl span is found as follows

{D} = 3.({7};.}1'?01 + {.‘;'.-.’T}ﬂ‘j‘\?:}) (3.4-224)

where 8 denotes element-by-clement multiplication between column matrices and :A\vl{

is the incidence due to relative motion between the Body and Fluid Axis Systems at cach leading
edge panel multiplied by the panel chord. The matric {Aw} } is described in detail in section
3.5. Equation 3.4-224) forms the basis for the leading edge correction.
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>.4.13 Aerodynamic Effects of Speed Variations

As shown in section 2.3.3.4, an aircraft is subjected to a variation in Mach number at
its surface when it undergoes a change in forward speed or undergoes a pitch or yaw rate,

AM(Y,Z) = % [aU + (QZ +R¥)] 237

where Y, Z are the coordinates of a surface point relative to the aircraft center of mass. This
variation in local Mach number produces a variation in aerodynamic surface pressure. The
entire variation given by equation (2.3-74) is imposed on the isolated body thickness
presstures, equation (3.4-173), and leads to the following variation in that pressure
distribution: .
. acS iso
a{cSyise = (E [[I]AU + {Z)}Q + {Y}R] M1 (34225
P oM U;

where AU is the change in forward speed and {2 }and {?} are column matrices of thin body
panel centroid coordinates and slender body segment centroid coordinates—body measured
relative to the center of mass in the Reference Axis System. The partial derivative of the
pressure coefficients is computed by finite ditference as

S
aC
G150 = Loric 150 (5150
M+AM M

following the approach of sections 3.4.3 and 3.4.4 evaluating all Mach number dependent
quantities using the incremental Mach number M+ AM  ie.,

S CS CS .
{cg } = [CP ] {s:°1%
Py Mean M wimean Su fusam
LS LS 276
+ 0P v (S0 hysan (3.4-226)
S S S
{cy 1} = [ePMy ol (SRl (3.4-227)
PB M+ AM B,B"M+LM B M+AM
- JeS . . .
AP 4 » 2 3 - < o
where the elements of {SB }M+AM are computed from equation (3.4-77) using
)
(BSC vy py (3.4-228)
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I1SO
Fromequations (3.4-225) through (3.4-227) it follows that the partitions of {BCf,IBM }
are given by

3C.S
Pp IS0 1 5 150 S LI5S0 (3.4-229)
: YW M+AM WM
ana
Q
acS 150
© IS S < )
{W—B} = i—M[{cg }tSo -{c3 1550, (3.4-230)
B M+AM B M

Also. from the thickness interference relation. equation (3.4-175). the increment to the
interference flow incidence is found as

s.int
P
M+AM

ty [TDIy y S (3.4231)

M+AM
In applying the Mach number variation formul. ie.. equation (2.3-74), to the combined
steady lifting problem and to the computation of thickness interference pressures, section

.3.4.7, the Mach number variations arising from pitch rate and yaw rate must be ignored. These
computation cases involve influence coefticients which are derived assuming the free stream
to be uniform, section 3.2.2.1. In this respect they are nnlike the isolated thickness pressure

which arises from local perturbations to the flow and which may be computed on the basis
of a local Mach number. The Mach number variation leads to the following steady lifting
pressure increment:

—
-

3LSC

[
(8

A - ,eq LU
(3.4-232)
where {W*}is defined by equation (3.4-168) while
3LEC, L1 e
[ SM ] = m [[LS’:’ i':'*’\v.‘/l-[_‘SL]P'J
and .
e = [crM AIZI
[”S\']P’HA!‘{ [ ]’."I*rAE";[“‘V‘;‘-HAI‘f
The increment in thickness interference pressure is
v }int _ fdcpxlnté’i
JPBW R Bt (3.4-233)
5V in o FR.
where vy . 1 (- \ PN ]
a:: J - ,\_ v S P - «\;

3-1ol



int
and {CV wivea is computed on the basis of the interference flow incidence of equation
342310 MHAM

The leading edge correction, section 3.4.12, is also a function of Mach number through
terms involving the integrated flow incidence, equations (3.4-222) and (3.4-223). These two
terms are evaluated at the incremented Mach number, M + AM, leading to
and (ISC

[IpM] (3.4-234)

M+AM 6]M+AM

From the second of these the increment in leading edge correction is found from equation
(3.4-229) as

1 M BISC
Lato/p} = ¢ |0 s H¥balc, 3

q (3.4-235)
BC BC
+{w}a{ }+{A:\}u{ }J Au
where
(Coy ;2 [tIsc ) - [1sC,] ] (3.4-236)
oM T AM g "M+AM 6 M

3.4.14 Enpirical Corrections

From the second of these the increntent in leading edge correction is found from equation
(3.4-224) as

Empirical corrections niay be imposed on the steady lifting part of the solution to the
aerodynamic problem given in section 3.4.7.1. The empirical corrections are of three types.
One introduces modifications to the steady aerodynamic influence coefficients: the second
introduces changes to the flow incidence distribution on the aircraft: the third introduces
direct changes to the lifting pressure.

Two sets ci steady aerodynamic influence coefficients, viz., those defined by equation
(3.4-169) an¢! those defined by equation (3.4-171), are used in the empirical correction
methods. The influence coefficients [LSC] are included to permit corrections to the flow
incidence at the mean surfaces of slender bodies: thus, empirical corrections are made by
making corrections to the following cquation:

{Cpt = [LsCHyY "} + [Al{¥} (3.4-237)

where the incidence matrix {\P } is defined by equation (3.4-168) and includes {\l’ } -the
flow incidence at stender body mean surfiaces,

The empirical corrections are applicd to equation (3.4-237) as tollows:
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(1) The flow incidence distribution { ¥ '} may be modified by multiplying the value
at each control point by a constant, ¢;. Thus. a modified flow incidence distri-
bution is obtained as

{cp) = [LSCIEC, I{¥ } (3.4-238)

where [cy] is a diagonal matrix of correction constants.

(2) The lifting pressure distribution may be corrected bv multiplying the acro-
dvnamic influence coefficients by correction constants as follows:

{Cp} = ECdlLSCI{Y"} (3.4-239)

where fcal is a diagonal matrix of correction constants.

(2) Any or all elements of the steady aerodynamic influence coefficient matrix [ LSC]
may be replaced by an empirical value.

(4) The flow incidence distribution {W '} may be arbitrarily prescribed as a linear
function of some motion parameter such as angle of attack. viz.

{y'V = {W;}a
and an incremental lifting pressure coefficient may be added as
{acy} = {aCp, T+ {aC, Jo + {aC, 18 (3.4-240)
0 Q 8
The lifting pressure due to this flow incidence and the incremental pressure is then

superimposed on the lifting pressure computed by equation (3.4-218) to correct the
lift pressure as follows:

{cp} = [AD (¥} + [LsC] (¥ }+%, [sa] (¥}

fl,. o~ Al N I ) 3 A '0’,-\
* 1aCp 1 1ALy {pr -P (3.4-241)
0 o B
where the matrices [A] and [LSC} may be subjected to the corrections of (1)
through (3) above.

A sample empirical correction using method (1) in conjunction with wind tunnel
pressure model data is presented in volume V. An example involving mcthpds (3yand (4 is
as follows. Assume« that wind tunnel testing or some other source provides the flow
incidence oistribution on a conventional aft-mounted horizontal tail and that the tlow
incidence is given as a function of angle of attack. Calling this flow incidence distribution
the measured distribution. the empirical flow incidence distribution {g’;&} of method (4 s
introduced as the difference between the measured and theoretical distributions at the
horizontal tail pancel control points. Assuming the horizontar tail to be the lth thin body,
the theoretical distribution ot tlow incidence is tound from equation (3.3-168) as



- » -1
{vy } = [AICWI][AIC] {wa}

Wl
a

where

= D l oo v o ew e V

= [[awI,B]:[ 1, B] [awx w1 [awthxl [awx,wn]]
contains the rows of the matrix [AIC] describing flow incidence at the control points of the
horizontal tail with that partition describing the influence of the horizontal tail set to zero.

3.4.15 Near Field-Far Field Approximation

The FLEXSTAB system contains a near field-far field approximation in the thin body
lifting aerodynamic solution. A portion of the aerodynamic surface, e.g., a wing tipor a
control surface, may be represented by a very dense praneling and solved as an isolated flow
problem. This solution is then averaged, in the manner described below, and patched into
the aerodynamic solution for a complete configuration. The result is a flow solution for the
complete configuration—the far field—based on the detailed solution to the isolated portion
of the aerodynamic surface—the near field.

3.4.15.1 Aerodynamic matrices involved in the approximation.—The aerodynamic
matrix equations which are generated using the near field-far field approximation are given
by equations (3.4-62) and (3.4-157), viz.,

v _ v Vi
(Yo} = [an,w] {sy1
and
v - v v
{\*BW = [aBW,BW] {SBW}

wherein the matrix [aWB ] is a partition of the matrix ("WB WBI These equations, it
may be recalled, are the relanona describing flow incidence at the thin body vortex panel
control points, the flow incidence resulting from the strengths of the vorticity distributions
on these panels.

34.15.2 Near field panel arrangement. - Two vortex paneling arrarigements are
associated with a near field region, figure 3.4-26. Taking a wing for an xample and choosing
the tip region as a near ficld, the wing is paneled without considering .he large vorticity
distribution gradients in the tip region. figure 3.4-26. The panel size at the tip is deliberately
chosen to be too large 1o describe the detailed pressure distributio. but small enough to
accurately yield the acrodynamic forces, assuming that the Liftine pressure on each panel is
an accurate average value tor the lifting pressure acting on the acrodynamic surface
represented by the panel. The accurate average values of lifting pressures are obtained from
a nedr field solution to the tlow problem in the tip region.
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Wins tip
{near field region)

Example wing
{1t Thin body)

FIGURE 3.4-26.—EXAMPLE OF NEAR FIELD—FAR FIELD APPROXIMATICN

The vortex panels of ihe near field regio. re subdivided into smaller panels, figure
3.4-27. A number n of chordwise subdivisions and a number m of spanwise subdivisions
are specified and each near field vortex panel is subdivided as shown by figure 3.4-27. If
bwii is the span of a panel in the near field region, the subpanel has the span by);/m:if
CwiiL and CyyjiR are the left- and right-hand chords of ith panel, then the subpanel chords
at left- and right-hand edges are Cwp;/n and Cyyir/n, respectively.

rli

Panel subdivision

Original panel >
g pane CW ) nll
Cwiig

FIGURE 3.4.27.-NEAR FIELD VORTEX PANEL SUBDIVISION
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3.4.15.3 Modifications of the aerodyramic equations.— An aerodynamic equation,
analogous to equation (3.4-157), is generated for the near f{ield region as follows:

3.4-242
{vV} = [a¥ ] sV} ( )
n n,n “n

where i‘l’,‘;" is the flow incidence at the near field panel subdivision control points induced
by the near field vorticity strengths §SX§ — the strengths of the panel subdivisions. This
equation is solved to find the vorticity strengths of the panel subdivisions as

(sy} = [ay 17 (v)) 3.

A single ccntrol point at the geometric centroid of each of the original panels is
introduced. Considering the ith panel of the original panels of the near ficld region, the flow
incidences at control points of the panel subdivisions of the it pan=I are set equal to the
flow incidence at the ith panel geometric centroid control point. This operation is
accomplished by the matrix operation

v = I v 3.4-244
{\!’n}i {‘}i ¥y ( )

where g\l'mi and %l%i have m times n elements~il &i being simply a column matrix
of ones. Extending this operaticn to all the panels of the near field region lcads to

Va _ Y
{\vn} = [Tn] {wn} (3.4-245)

where

{1}, zeros

[Tn] z {1}2.

Zeros °

o

and a‘l'x E is the matrix of flow incidences at the geometric centroid control points of the
original panels in the near field region.

An average vortex panel strength is also computed tor each of the original panels. This
is a weighted averuge based on the panel subdivision areas. The weighted average strength of
the ith original pinel is expressed as

v

aV
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where

LSJi = & 1 LS1.,S2,%°"

“WIi

S(nxm)J

and Sj is the area of ith panel subdivision while Sy, is the area of the ith original panel.
Extending this result to all panels and panel subdivisions leads to the expression

2Vy - v a7
{s } = s {sn} (3.4-247)

where

LS, ZEeros
[Sn] = LSi2

Zeros .

Substituting the transtormations, equations (3.4-245) and (3.4-247). into the near field
solution, equation (3.4-243), leads to

vy - gVv 3.4-248
(8,1 = (A, 3 ¥ { )
where
- Y/ -1
Ca, 3 = [, la] 177 [7)]

This expression is now inverted to obtain

=V =2 av
oy =10a 3 (5} (3.4-249)

. . . . . . AV
ThVe' elements of the matrix [Ay i Uare inserted into the matrices faywp wi and
l"‘WB WB' . replacing the elements corresponding to ihe criginal pancls of the near field
ro.gmr]. The matrices [.aWB.Wl and | WB.WB_" in this modm.ul form, are then us_o'_l in the
solutions to the combined steady acrodynamic problem. section 3.4.7, as well as in the
combined unsteady acrodynamic litting problem, section 3.4.11.
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3.4.15.4 Application of the near field-far field upproximation. — As noted above, the
near field-far ficld approximation is used in constructing the soluticn to that part of the
aerodynamic problem which incorporates the vortex panels. i.c., the tifting part. The
approximation has a close resemblance to Saint-Venant’s principle, reference 2-1. pp 89-90.
viz., if the boundary condition at a portion of the surface is replaced by a different
boundary condition on the same portion of the surface, then the effects of the two different
boundary conditions sufficiently far removed are essentially the xame, provided that the
force distributions are statically equivalent.

The near ficld-far field approximation may be applied in several ways. The near field
may be confined to a ¢ -stion of a single thin body, as in the example above, or it may
encompass the entire body or sevzaral bodies. The near field may also include the inter-
fevence surface of a slender body. This capat.tity allows a wing-hody intersection to be
paneled densely in a near field, thereby increasing the accuracy of the solation in this region
of complex vorticity distribution.

3.5 AERODYNAMIC FORCE DERIVATIVES

In this section the results derived in the preceding sections are combined into a set of
matrix equations describing the aerodynamic forces aciing on an aircraft ansing from
changes in the aircraft’s motion, crntrol surface settings, and elastic deformation. These
matrix equations are used in the FLEXSTAB system analysis to generate the ae,odynamic
{orce derivatives and, subsequentiy, in sections S and 6, to generate the stability derivatives
tor a flexible aircraft. In section 3.5.1 transformation matrices are derived which transform
the aerodynamic pressure coefficients of section 3.4 into a system of aerodynamic forces
acting on an aircraft. In section 3.5.2 matrix expressicns are derived which relate the
aerodynamic pressure coefficients to an aircraft’s motion, control .urface settings. and
elastic deformatinn. The results of sections 3.5.1 and 3.5.2 are thien combined in a
first-order perturbation expansion in sectioa 3.5.3. This expansion yields equations for
formulating the acrodynamic force derivatives.

3.5.1 Aerodynamic Forces
The objcctive of t*is section is to derive equations which resolve the acrodvnamic

surface pressure into a force and couple at the center of mass of an aircraft. These equations
are derived from the following integrals:

FA L aj j C Ads
c : F (3.5-1)
S
and
M = - 3 C » 1S
c ”‘Jé prRds (3.5:2)
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where Cp is the acrodynamic surface pressure coefficient governed by the equations of
section 3.3.3, M is the unit vector normal to the aerodynamic surfaces defined analytically
by the equations in sections 3.2.3 and 3.2.4, and T is the position vector shown by figure
2.2-3 from the center of mass to a point on the aerodynamic surface. The deri:cd equations
incorporate the matrices of pressure coefficients, derived in sections 3.4.2 through 3.4.11,
into a matrix analogue to the integral equations given by equations (3.5-1) and (3.5-2)
above. These matrix equations for the total aerodynamic force and coupl: are derived as
first-order approximations consistent with the acrodynamic theory developed in section 3.2
and are based on the numerical method of solution developed in section 3.4.

3.5.1.1 Puneling scheme expansion of the aerodynamic force and couple.— The matrix
equations for the aerodynamic force and couple are derived starting from an expansion of
equations (3.5-1) and (3:5-2). This expansion is in terms of aerodynamic forces acting at the
centers of pressure of the surface s« gments introduced by the paneling scheme of scction
3.4.1. As such. the acrodynamic force and couple at the aircraft center of mass appear as
follows:

" AL M mJ ML 2a
=r I + Iz .+ 1 I .
C a1 i=1 Wb goagap BT jog ey BOK
and . N e " M omo . (3.53)
i =z I ry.x 4 I z X . +
C I=1 i=1 I17"WIi J=1 j=1 Jj" " BJj
Mg
- tA
T L raxipn
J=1 k=1

where -I%“ is the force at the ith panel of the Ith thin body.?‘éj- is the force at the jth panel
on the mean iaterference surface of the Jth slender body. an ?ﬁ]k is the force at the kth
segment of the Jt slender body, figures 3.4-1 anu 3.4-2. Letting each of these forces be
expanded on the Reference Axis System, the components of the ith force are expressed as

r —
A
fx
i
A
= - T
(e = |ty (3.54)
a
ta
L~

and the components of foree and coupie at the center of mass are formed as

(FR(DY = o717 15H) (3.5-5)
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where -

3 .
F‘;(l)
Fg(l)
(FRi)} = My (i)
<A
rY(i)
Y. Y
ux(l)
H‘;(l) _ _
B - 1 & 3
and -~ 2 1
Zi c “xi
% T =
Ls;3 5 1 0
-¥. X. i}
I i

The coordinates )-(i, ?i. ii are the coordinates of the center of pressure at the ith panel or
slender body segment relative to the center of mass and expanded or th: Reference Axis
System. The total force and couple at the center of :.ass due to the aerodynamic forees at
n panels and segments is expressed as

(75} = (37171 (3.5:6)
whiere
r —
[31]
(¢ 3= (¢i1
(3.1
L J
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The matrix [¢*] is termeu e 1igid body mode shape matrix for reasons made apparent in
section 4.

3.5.1.2 Aerodyiaamic force at a thin bodv panel —The aerodynamic force at the
center of pressure of a thin body panel.-l%,“. is expressed as an integral of quantities which
may be defined in terms of the (£.7) local panel coordinates shown by figure 3.4-3. The
aerodynamic force therefore appears as follows:

WIi P, 1

o ?1“ (c, Eu + C, n.)ds (3.5-7)
u 1

Swri

~

where the subscripts u and 1. respectively, refer to evaluation at points on the upper and
lower aerouyuamic surfaces.

The unit surface normals.'ﬁu and -';l- are described analytically by eqaation (3.2-14).
To first order in the acrodynamic perturbation parameters they are expressed as

-»> 0 A
u T Xy (r;FpXpn¥y) + BH(XL YD)
- sin GIj + cos 6k
and
(3.5-8)
> - ] - . N
nq 5?1( TP LY = By G, Yp )i
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The aerodynamic pressure distribution is assumed to be the sum of two parts. one part
a symmetric function of the local thin body coordinate Zj and the second part an antisym-
metric function of Zj. First-order approximations to these pressure distributions based on
the thin wing theory of reference 2-3 are used in the derivation. The antisymmetric part,
therefore, is governed by

ACp = CPl - CP, = ZY(XI’YI) 3.59
a
and
v v
C = -C
P1 Pu

where ¥(X[.Y}) is the vorticity distribution at the mean surface,

v _ .V
Cp = Cply - ot
u I
and
v v
C, =Cul, _ -
Pl PZI—O

The symmetric part of the pressure distribution is approximated as

S =~ AS,. .
CI;,u CP(LI-'IIFI(XI,YI))
and 3.5-10)
S < .,.8 - .
CP1 LP(ZI- TIFI(XI,'XI))

whore Zp = 47 F (X[, Y ) is the thin body thickness shape.

Introducing the approximations to the normal to the acrodynamic surfaces given by
eguations (3.5-8) and (3.5-10), the acrodynamic panel force. f{\v“. is found trom equation
(3.5-7) as follows:

2ol ac¥ lem It cine Secose. Slas
WIi = q ACP IaxI I] cos s
S, .
Wi (3.5-11)
4 SF A
<[ .8 I
- 2qJJ oY Tomo 1dS
P, 137
1 I
SALL



Since the vorticity is uniform on each panel, sections 3.4.3 and 3.4.3, equation (3.5-11)
immediately reduces to )

9H ~
A _ >V I..% . . T
¥WIi = chPwTi{-BI ” W;dSI'SWIi(SlneIJ - coseIk)]
- S .
Wi (3.5-12)
oF
- S 14
- ZqI[ €y Tozg—1dS
1] "y TI%;

where AC},W“ is the lifting pressure coefTicient defined by equation (3.4-66) for the ith
panel. Several approximations are made in evaluating this expression in the FLEXSTAB
system. These are as follows:

3H 2H
II —o1dS T (=oi).S

N NBXI 3XI 17WIi
WIi - -
(3.5-13)
oF oF
S I ~ AS I
C, =o=dS =~ C (=>).S,. .
S“ PlaXI PWIi axI 1“WIi
WIii

where (9H}/aX);, (3F|/9X)); and Cls>w1i are the values of the functions at the geometric
centroid of the panel. Introducing the approximations into equation (3.5-12) results in

A - gadY s...(-m (BHI) i sine 3 K
wri T WCp . Surit-8rlay ) i sindpd + costrk}
- ’F, (3.5-14)
- 2qC; Syt
Py; WILTI'3X i
Introducing the defi..ition
(A ]
"““!I i
A L A
s} = Yors (3.515)
A
il
. -




which corresponds with the definition of equation (3.5-14), the components of
aerodynamic panel force are expressed as follows:

BHI (3.5-16)
1 0‘ . —H(sx—I)i o Acv
(A .y =g |0 st WIiT Py
WIi 0 coseI 1
L 7
k33
I S
. - 2S, - T+(a—) - C
WIi' I 3XI 1 PWIi

0

- 3.5.1.2 Aerodynamic force at a mean interference surface panel of a slender
bodyv.—The aerodynamic force at the center of pressure of a mean interference surface
panel, Faj" is developed following the approach of section 3.5.1.2 above. As shown by
figures 3.A-I and 3.4-7, the mean interference surface is a cylinder with a polygon cross
section, and a unit vector normal to the surface of the jth panel is given by

> . < -~ (3.5-17)
NBJj = SInGBJj j + COSGBJ]‘ ¥

where 6 Jj is the angle shown by figure 3.5-1. The normal to the slender body surface at the
geometric centroid of the jth panel is obtained from the analytica! description of the slender
body surface normal, equation (3.2-20). To a first-order approximation in the perturbation
aerodynamic parameters this vector is given by

R dR 36 AT, ~
. = {- ). 1 =) .C .+ ~—).Si . Ji
nBJ] { [aJ(de)] bJ('axj)] OSkp y3 CJ(BXJ)jSln“BJJh
. ~ (3.5-18)
+ cosuBJj] + 51nuBij;

where the angles 0gj; and upj;j are related as

8. .. =w/2-

The panel force is expressed as

A - Vs
oy 'qSJJ Cphpgs 9S>
BJ
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NBJi Normal to mean interference surface

B gy;

Slender body mean interference curface pane!

> v,

FIGURE 3.5-1.—SLENDER BODY MEAN INTERFERENCE SURFACE UUNIT NORMAL VECTOR

but on assuming that equation (3.5-18) holds for all points on the panel aru on recognizing
that the pressure is uniform this expression reduces to

dR 9G
A _ v _ J J

(3.5-20)

{fBJj} :
U oarg e 3T, 7]
+[aJ(de)] +bJ(3—X—J_)jCCSuE-If + C:(ayJ)jSir‘.L‘EJ ]SEJ]
=g - COS“BJjSEJ] CE
i T SiPUgraSpgs _ B
(3.5-21)
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3.5.1.4 Aerodynamic force at a slender body segment. ~The aerodynamic force at the
center of pressure of the kth slender body segment, fﬁ]k’ is approximated as

V.
?IB\J]( = ‘a f I CP;rJ(E)dEdU 3.5-22)
o L
BJk

where the approximations arise by taking rj(Xj) to be the radius of an equivalent body of
revolution, section 3.2.4. A further approximation is introduced by letting the unit normal
vector 1 be the first-order approximation from equation (3.4-20), i.e.,

~

> Ry ) 2 inuli (3.5-23)
n = { -[aJaG + bJﬁTIcosu + ch—)gszmu]l 3.5~

+ cosuj + sinpkl;

The pressure coefficient Cp is due to the isolated slendcr body thickness and lift, sections
344,345, and 3.49. The surface pressure distribution, expressed ir: terms of the
coordinate 8 shown by figure 3.4-20, is given by

_ A5 ZD,. . YD
CP(XJ,G) = CP(XJ) + CP (/IJ)sn_nG - CP (XJ)cosO (3.5-24)

where c,s,(x ) iz the pressure induced by line sources, while CgD(X })sin @ and (‘;D (Xj)cosd
are, respectively, the pressures induced by the z and y line doublets, equations (3.4-129),
(3.4-130), and (3.4-137).

Substituting the above expressions for the unit normal vector and the pressure into
equation (3.5-22) and carrying out the integration with respect to p noting that p = @ yields

A = dR Je
Fo * 4 I {-nf2a.2cS - p.LciD *
L JdXT T UaXJ P
BJk -
(3.5-25)
aIJ ZD. 7 YD~ ZD7
+ CJWCP i - mCp 3+ mCp k}rJdE
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The integration with respect to Xj is carried out introducing the following approximations

dRy o _ar
f ai;(E)CP(E)FJ(E)dE = ()

Lok

aG .
J YD A % J
I 'ax—J(E)CP (E)I‘Jf;)ds (—-)

L /
BJdk /
31 _ 31, .,
J,-y~2D = J ZD
J 3% ()Cp (BIr (£)AE = (570, Cp T g lp gy
. J ‘ BJk
BJk
(3.5-26)
YD . XD
J ciPeerr (e)de CPBTerkLBJK
T 4. .
Lpox
7D ~ AZD
J cFPeyr eag = B oo
L BU k
BJk

where the subscript k denotes evaluation at the midpoint of the slender body scgment.
From equations (3.5-25) and (3.5-26} the matnx expression tor the components of force at
the center of pressure is deduced as

- dR 1
D [
'“eraJ‘dXJ)kLBJk
A - c
(f } = ¢q 0 (o
BJk Pori
0
- - (3.5-27)
3G 31 - .
B T 7 YD 7
-1, b (=)L, ., 7C. (=), L., Ce
[OR U a/:J PT” J BYJ k E'._!': FEJ}'
- g L f\’_:D
tal "ok 0 e
BJik
0 =TT 4 L
g Jk=BJK
B JL i
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3.5.1.5 Combined aerodynamic panel and slender body segment forces.—The matrix
expressions given by equations (3.5-16), (3.5-21), and (3.5-24) describing the aerodynamic
forces at panels and slender body segments are combined into a single matrix expression as

follows: (3.5-28)

{8} = GIT . JITRANS JTCSI S + QLT 10T p] [Tppl Cp)

1SO
where *Cls,i is the matrix of isolated thickness induced pressure coefficients defined by
equation (3.4-173), 3 Cpi is the matrix of lifting pressure coefficients defined by equation

(3.4-166), and contains * C},’ t» int-the thickness interference pressure defined by equation

(3.4-174), while
B f (3.5-29)
fx
“BJj
f‘;‘ forces at slender body
BJj segments
fA
Zors
BJj
fA
Xu1i
f? forces at thin body
WIi panels
A
f
Zuti
L d

The matrix 2fA§ defined by equation (3.5-29} is identical to that appearing in equation
(3.5-6); therefore, the total aerodynamic force and couple at the aircraft’s center of mass
can be computed from equation (3.5-28) by th: operations indicated by equation (3.5-6).

The transformation matrices appearing ir. equation (3.5-28) which resolve the
aerodynamic pressure coefficients, {Cp E'SO and ? Cp‘ . into thir body panel and slender
body segment forces are as follows. The matrix [ Tp] transtorms the components ot force
from the local thin and slender body axis sy'stems to the Reterence Axis System; therefore,
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l 1
(Teql = \ 0
Zeros | 0
I
zZeros
= |

The matrix [TRANS;] transforms isolated thickness induced pressure, i.e.. qupf

—
zZeros
zercs (3.5-30)
0
-sin GI
cos GI
lSO

components of force in the local thin and slender body axis systems; therefore, it follows

from equations (3.5-16) and (3.5-27) that

F ‘. er
ZTI’PJk(a-X-—)kL
J
v
0
[TRANSt] zeros
Zeros
where
~A
(—Jy (dQ )y
d¥ .,k Ja¥ Tk

(3.5-31)
| ]
BJk |
I
| . 3z,
zswzi(§§_)i
| I
0
I 2eros .°.
I -
yZ 3F
I, - I
(axI)i = TrE0)
L

The matrix [ Tppl transforms torces at thin body penels trom components normal to
the mean camber surfice to comronents expanded on the local thin body axis systems:
therefore. it tollows from equations (3.5-16r and (3.5-27) that
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B (3 | zercs 7
' ‘s« zeros
[Tped = 32, (3.532)
)
| BXI 1
zeros
l R
| ! zeros : .:_J
where
(:—iz)i = ﬁ,(-gi{X—I).
I Ak

and 0yy; is the local camber angle.

The matrix [Tgpl transforms lifting pressures G4, } to components oi torce {FA}.
equation (3.5-38). and is expressed in partitioned form as

| !
[(pBL] | [I¥T], zercs (3.5-33)
(T..]
FpP 22708 I zeros | EAWJ
| |
where _ -
0. zeros
. (3.5-34)
ta,d = Swri
zZeros .’

The partition fAw] transforms the litting pressure on thin body panels. equation 1 3.5-163,
into lifting force components normal to the mean camber surtaces.

The partition [INT] vields the acrodynamic forees at slender body centerlines as a
restat of aerodynamic pressure on the slender hody mean interference surfaces, tign-¢ 3.5-2,
The aerodynamic pressure on cach panel of the interference surtace is resolved into three
components of force acting at the pancl centroid. as shown by equation (3.5-21). Fipressed
in terms of the .‘)_,j coordinate shown by figure 3.5-2 these components are given by



A - (dRJ 36 31 v
f = qla (3= + bylgg)s sind . + Cy (—) cosé . 1S, -.C
X Ly Y .
BJ3 J'dx 73 J X ] J] T3-"BJ3] PBJJ
A - . v
f = ~q sinf8 ..S .C
Y833 73 B9 PRyj
A - v
£ = -q cos@ ..5,...C
Igy; J3°BJI} Py s
Zy

/// j YJ
—___________A-————
!“'kth segment —l

FIGURE 3.5_.—AERODYNAMIC FORCES FROM INTERFERENCE PRESSURE
ON A SLENDER BODY

where (ary; dXJ) is the slope of the thickness shape cf the body at the jth panel centroid
and 0_]} is the angular orientation of the th panel, figure 3.5-2. The compouents of force at
the panel centroids are applied directly to the centerline of the slender body at the centroid
of the interference surface centroid as follows:

\ . n [er 3% ; I, ] v
£ =g I ( Y. + b (55 °).sind + C,(x=—) cos8 ..l s ..7p
£73 21 dXJ 3 J 9X g j J3 J E)'XIJ DJJ 371 e
A L X v

I = ~3 % 'sin6..S_..C

\¥ 4 { T

7 33 =1 J]17BJ3 PEJ]’

" n ‘J

©, 7 -q L 20s8,.S...C]

L.J _’:l v o .EJJ



where the sum is over the n  panels forming the kth segment of the interference surface.

Tae partition [INT] is therefore given by (3.5-35
F ]
o— zeros —
er BGJ ; oI, ]
[(z=).+b . (557).sind . +C . (55=) .cos6 .. IS, -.**"
QXJ j J BXJ 3 Jj 7J XJ 3 Jj-"BJ;
[INT] = - SlnerSBJj see
o ews
Coser”BJj
= zeros .

The partition [DBL] yields the aerodynamic fcrces due to line doublet induccd
pressures: and, although the acrodynamic surface pressure induced by the line doublets
varies in the X-direction, the nonlinear portion of the variation in the pressure is ignored
and the pressure at ¢ach sicnder body segment centroid is taken to be the average of the
pressure ove - the entire segment length. The acrodynamic forces at the scgment centroids
are found from equation (3.5-25) to have the following components:

3 ol

A J\~YD T, ~ZD

s ==gwL__.[b_(55-)C, -C.(z5)C7 Ir ..

Xpg 7 OBAYITIAX,TTRRes T AX T Fg g YD (3.536)
& - YD

T = qmr..L,..C.

Y13 J3 BJ3 ¥BJ3

- - ZD
i = -qvr..L.,:C

251 [ty _,v_TJ FBJ]

The clements of tive partition [ DBL] are constructed from equation (3.5-36) with {C pl
aranged so that -+ Y-doublet induced-pressure coefficients occur first. followed by all
Z-doublct induced-pressure coetficients. Thus, *3.5-37)

zercs ’ zercs
[~ - . I [~ -1
al. RN
~rC (=) .1 . | b (=)L, oo .
-0 ‘s TBJ3Td] i a/\': 371703
{DBL] = s ! -
TOITESS | .
i
C ! L—?TZ‘-_ fagt
- = N'4o) | - Jz-,
sercs Lot 7ey 28
v
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Matrices containing compouents of force computed by the above transformations are
as iollows:

(FA = qUrgplicy)

and

Ay - g
{23} = QT T HCy)

The elements of these two zerodynamic force (or airload) matrices are

- 4 i
£x
BJj
fA
YBJj (3.5-38)
£
BJj3
{FA} = -2 _
and - 7 f';‘I
. WIi
£ :
BJj3 L. .
A
fY .
BJ)
. A
Ay - | -+ -
{fT} = :
A
f
XIgts
- A
f
Zly1s
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3.5.1.¢ Aerodynamic panel forces from leading edge correction.—The leading edge
thrust correction. equation (3.4-224), for each thin body aerodynamic panel, where
multiplied by the panel span b;. yields an aerodynamic force in the X-directior. These
airloads are incorporatzad into the system of airloads {f% f equation (3.5-39). by the
following transiormation
A

{tr}yp

= [TRANS 1{D} (3.5-40)

where the transformation matrix has the following partitions

(o]

[TRANS. ] 2| - -

D [1p]

The ¢ero partition causes the componcents of foree at slender body segments to be
unchanged by the leading edge correction. The nou-zero partition contains the following
elements along the diagonal:

b

-
-
BN

0

The transformation. equation (3.5-40), therefore leads to the force components

fA .. =N fA = Dibi = D
YAt XIi 1 i

oy

at each of the thin body vortex panel centroids.
3.5.2 Lifting Pressure Coefticients in Terms of Flow Incidence

The total lifting pressure distribution is found in coefficient form by combining the
lifting pressure coetficients due to unsteady incidence. equation (3.4-218), with the
thickness induced lifting pressure. equation (3.4-174). The result of this lincar sum is

expressed as ; . int 3.
(0o} = [aggl(¥) + ACsa 103} + (cp) (-4

where the interference pressure given by cquation (3.4-174) must be written as

{c,}

P
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the partition of zeros corresponding to line doublet induced pressures. This expression is
further expanded by evaluating the flow incidence given by equation (2.3-69) at the
acrodynamic control points. This operation is done in terms of the elastic deformation, the
aircraft velocity components, and the control surface deflections as well as a reference
camber shape, equation (2.3-69).

In carrying out the above operations the aerod:mamic influence coefficient matrices,
and [A] and [8A]. are reorganized in that the columas of these matrices are ordered
differently from those shown in section 3.4.7 and 3.4.11. This reordering is indicated in
equation (3.5-41) by the following changes in notation introduced when constructing
equation (3.5-41) from equation (2.4-218): [A] is replaced by [Apgland [8A] is replaced
by [5Apg]. Similarly, these changes must appear in equation (3.4-240). The reordering is
related entirely to the line doublets and leads to a flow incidence matrix having the
following form:

[Al— [ALg) [8a1— [6AL,]

For the symmetric case (sec. 3.4.1.5):

YZD ;
.1 Z- doublets of slen -~
. bodies on the pl« e (3.542)
YED of symmetry, n Elén,
YD
Yn+1
7D Y- and Z- doublets of slender
?n+1 bodies off the plane of
(¢S} = . symmetry, m = zsz
9
D
vn+m
ZD
wn+m *
‘ V} vorticity panels of thin bodies
b4
W off the plane of symmetry, zgff.
_ 4 _t

where \l'i\ D and ‘l'iZD denotes tlow incidence at the it y.doublet and ith Z-doublet con-
trol points and 9", Q‘S’“ and !Z(.}” are numbers detined in appendix B of volume 1II.
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For the antisymmetric case (sec. 3.4.1.5):

(3.543)
5 |
1 Y- doublets of slender bodies
: on the plane of symmetry,
’ - oON
wzn n = ES
YD ’
?n+1
AV Y- and Z- doublets. of slender
ntl bodies off the plane of
A -
¥ = .
s .YD symmetry, m = 21 fo,
Wn+m
v ZD

n+m !
{Y:I} vorticity panels of thin bodies

{ both on and off the plane of

off
symmetry, zg“ + R'T .

where Q.(I’.“ is a number defined in appendix B of volume Iil.

3.5.2.1 Expansion of the flow incidence matrix.—Based on equation (3.4-218) the
flow incidence matrix may be expressed as

where (¥} = (¥} + {07} + (¥}

{7} = (¥} (3.544)
and

{8y = (8% + 9

The incidence { \llc} is based on the caiiber shape of the undeformed aircraft and is identified
with {\IIO} - the incidence in the apsence of motion and elastic deformation. case (1) of
section 2.3.3.1:{0*} is the elastic deformation of the camber shape; and | Wy }is the flow
incidence due to aircraft motion (viz., motion of the Body Axis System relative to the Fluid
Axis System, section 2.2,3) and control surface deflections. Referring to equation (2.3-69),
the flow incidence is expressed as
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{yy} = {Vae”e_" (rg Jog + (%5} + (¥ o + {¥g)8 +

(3.5-45)
s e }2P + (v 12Q + (¥ 3R +
P'b Q’'c R’b
+ [¥,]0u} + [¥ 1}
where
. b, S _C. 2. b
and
U, = L4
i~ Ui
The eleinents of the coefficient column matrices are as follows:
Elevator:
S T*
‘?"r_} 7Z- doublets slender bodies on the
“Se plane of symmetry, ,on
- ?
-0 ""— (3.546)
nyD Y- and Z- dcuhlets of slender bedies
. 38e off the plane of symmetry, 29.?ff,
1 '!6 )} = S
Q ‘P?D
I5e
O } Jorticity ranels of thin bodies off
t 8. the plane of symmetr'y,loff
L. J1 T

wihiere the elements may have any value representing surface camber change due to clevator
vontroldeflection 8 ..
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The elements of the control incidence vectors, e.g.,{\l’ae} , introduce the effects of
arbitrary gearing of the controf surface rotations. The change in incidence at each aero-
dynamic control point, e.g., \llive, is related to the control rotation &, by a gear ratio (kd,);,
which can have any specified Veﬂue, either positive or negative. Further, the control surface
hinge line for a thin body control surface (fig. 3.5-3) can have any angle of sweep, V! The
hinge line sweep angle is measured in the local thin body axis system, section 3.2.4; ﬁ?us_.
referring to equation (2.3-53), incidence at the ith panel centroid on the Ith thin body is
given by

‘{'l = (nXGe) Ge
i
where
(n )WI = (K¢§ )-cosl‘gl
Xde . el e
il
Yy
-
i™ thin body
planform
Elevator control surface l?n';: :)il':urfaoe

located on 1th thin body —

¥ X

FIGURE 3.5-3.—CONTROL SURFACE HINGE LINE

The quantities (nXge); are given the symbol S in sections 9.2.1 and 9.2.2 of Volume 11—
CONTROL SURFACE DATA.
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Aileron:

J_tT 1

’ (3.547)

zOn ' 2gff

where the elements may have any value representing camber surface change due to aileron

control surface deflection, 63.

Rudder:

L

. 1T
‘{’¥D on
1 L-
ér s
. I (3.5-48)
yID | ,poff
1 S
Sr
‘P%D
Sr
v * 3
{‘yér} 22“ + lafr
|.|. b3

where the elements may have any value representing camber surface change due to rudder

control surface deflection Br.
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Angle of attack:

{‘ya} =

coseI{l}WI

L

r—_ El} -
[2];

10
-
',-"

(3.5-49)

-
where 01 is the dihedral angle of t'-; 1th thin body and {1} w1 has as many elements as there
are vorticity panels on the 1th th.n body.

Angle of sideslin:

{v

(o]

-

A ]

-

(3.5-50)

1,
-ty

where O is the dihedral angle ¢f the It thin hody and {17 wi has as many elements as there
are vorticity panels on the 1th thin body.
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Roll rate: - ) — T

Z.
[ _1] 2‘,‘off
-y S (3.5-51)

_ . _ gon . goff
{Z}WIsnxGI - {Y}WIcoseI T T

L - i
where 8y is the dihedrai angie of the I!h thin body and {?}Wl, { i}“,q have the Reference

Axis System coordinates of the vorticity panel centroics on the It thin body measured
relative to the center o ;yuass.

Pitch rate:

{X} f Jon

_’._S
0 £f

X. 21‘; (3.5-52)
1l

{\VQ} = r. ———- +
o of f

{X}WICOSOI L

N — _J_—_

where 0| is the dihedral angle of the Ith thin body and {X }wq contains the X-Refercence
Axis Systera coordinates of the vorticity panel centroids on the lth thin body measured
relative to the center of mass.
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Yaw rate: —

@ | fon
‘s

B !

[?i] 0 gOf £

. 0 oS (3.5-53)
{vpl = )

{?}WI?lnGI g;n + Q;FF
! . -

where 01 is the dihc dral angle of the Ith thin body and { )_(}\,l contains ‘ne X-Reference
Axis System coordinates of the vorticity panel centroids on the lth thia body measure
relative to the center of mass.

2.5.2.2 Eftects of dvnamic pressure and Mach number varivtions.— Motion of the
aircraft relative to the Fluid Axis System. section 2.2.3. introdue es a variation in the
dynamic pressure and Mach number at the aircraft surface. i.e.. 1 variation in these
quantities from their values apparent to an observer fixed relative to the Fluid Axis System.
These vanations are described by equations (2.3-76) and (2.3-77) of the kinematic
description.

In the FLEXSTAB system the dynamic pressure and Mach number variations are
simplified by assuming that the dimensions of an aircraft in the z-direction are always
small--at lcast an order of magnitude less than either the span or the tength. Variations in
the dynamic pressure and Mach number along the z-direction therefore are neglected and
equations (2.3-76) and (2.3-77) arc approximated as

— oy o = - R
a(Y) = q_ + 2q,5 Y
and
_ R o
LGOI S A
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The dynamic pressure is evaluated at the aerodynamic centroids of all aerodynamic
segments (i.e., slender body centerline segments, slender bodv mean interference surtace
panels, and thin tody mean surface panels, figures 3.4-1 and 3.4-2). The values obtained are

arranged in matrix furm to conform with the matrix [CPM] defined by equation (3.4-167).
The result is expressed as

qula ¥ = q (FT ] + %1 L IR) (3.5-54)

where [Ic] is an identity matrix and

I
I
_ZEI‘OS_.L — — _l_ T —
I |
I
|

s

The quantities Y(i), ?(j). Y (k) are the coordinates of the segment aerodynamic centroids
relative to the aircraft center of mass expanded on the Reference Axis System.

A matrix expression similar to equation (3.5-54) is constructed 1o account for the
effect of dynamic pressure variations on the pressure generated by the isolated thickness,
i.e., the source distributions of sections 3.4.3 and 3.4.4; hence. the matrix is constructed to

conform to the matrix {Cg} 159 defined by equation (3.4-173). The result is expressed as

[ﬂt ® 9w (9]

(3.5-5%)

[5d = ([ + 2l dR)

and l‘?t] is formed like [?CJ but does not include the coordinates of the siender body
mean interference surtface pancls.
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The effects of Mach number variatiors are applied only to the source distributions of
the isolated thickness problenis of sections 3.4.2 and 3.4.4. The matrix form, therefore, is
given by

[rl, = MBI + farld

(3.5-56)
where

— oG o -
tax d = t7 4R
Introducing the dvnamic pressure and Mach number corrections given by ¢quatior:s

13.5-54) through (3.5-70) into the pressure transformation equation. i.c., equation (3.5-28),
leads to

<
aCs iso
A.‘l. - r ~ P P’
{f°} = C-oo[:f-""][TjANSt][“it] CIVESO 4 [A:"t] I
(3.5-57)
+ qw[TfT][TTP][T?P][q ]{C?: +
+ qw[TfT][TRAISID][qC]{D}

.S, S0 . - o .
where {a(‘sxa“§ is the effect of speed variations on the isolated thickness pressure
coefficients wiven by equation (3.4-229).

3.5.3 Aerodynamic Force Derivative Formulation

The aerodynamic forces are found by substituting the pressure coefficients, equation
.3.4-217). into the pressure transformation given by equation (3.5-57) and constructing a
tirst-order pertur ation expansion. The coefficients of the perturbation motion variables are
the desired acrodyvnamic foree derivatives.

2.5.01 Reference State.—-In the FLEXSTAB system the acrodynamic force aeriva-
tives are found from perturbations about @ reference state which consists of steady motion.
In the reterence state the pressure transformation is given by

PR
ac; 150)

—
ol!

A - - S,1iso
F - ™ m ?‘ ~
{f }x = ‘*IE‘ET][‘P‘A'JSt][“t];({CP} + [AMt]l{

+ g LerJ[iTF][TFPJchJ!{CF}‘ + 7

i POt
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and the lifting pressure coefficients are
= w fnd int -
(Cpl = TAggd Ty} - {o*} + (¥} } + {CpH (3.5-59)

where the subscript 1 denotes evaluation in the reterence state and as noted in section
35.2

3.5.3.2 Perturbation expansion.—The perturbarion ¢xpansion is an expansion about
the reference state described in the preceding section and is obtained by evaluating equation
(3.5-57) for a state of unsteady motion consisting of a small perturbation from the steady,
reterence state of motion. The translaticnal and rotational velocities of the aircraft,
equation (2.2-3), are expressed as

vV =¥ +7
c c cp
and
> _ > + -
W = W wp
where - % . .
= ] + | +
Vop T uig t vig * vk
and
wp= ‘.IR“" qu+rkB

perturbation velocities. As a result of the unsteady perturbation motion there is a
perturbauon to the dynamic pressure, equations (3.5-54) and 5.5-55).

4 N = ~AKS e 2 L
q ¢ ) c (2F — 4 7 s
o Tagddp = & (2033 F- ¢ L0735
(3.5-60)
and
~ [Fa =~ ( 15+ oRT 17
(1qutJ)ﬁ ST Eitu!vl L-,J l)
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The Mach numbe. of the oncoming stream. cquation (3.5-53), is perturbed as

. - u r
M, = M1(fIfJ5? + EYtJE_)

Finally . perturbations to the flow incidence occur and are obtained {rom equaiions (3.5-4!)
as

¥}, = (0%}, + {¥,}.

{‘{'}:p

1l
-—
(O}
x
et
Y
+
Lo
-1
o
[wy)
o]

Substituting the above first-order expansions into equation (3.5-37). neglecting terms
which are of second and higher order in the perturbation quantities as well as a term
involving a second-order derivative of the isolated thickness induced pressure coefficients.
! . with respect to Mach number. leads to the following first-order perturbation

S
i€ P
expaasion of the acrodvnamic forces:

(52 = 3 [72aNS_ ] [ 2f§+J,':-+ 207, 35— )({cg}f ° s
aCS isc
o u_sc:
+ fl.\.f":t;ll{gg—}l ) + t J ([C
(3.5-63)
g acS =0
+ SV M ) ] +q [T..1[T.,] [ (203 3 5 +
A § “ 3;; 1 ia -P “ o1

+ 207 J% ) {c ) ¢ [‘ch;!l{cp}p.]v
+ [TRANS ] | (203 d5r + 209 35 {0} ¢

where the principal Jquantizies appearing in this equation are listed as follows.

Reference tnght condition lifting pressure coetticients:

; 3
S N VS N CSTR IR C-hb SR S 0 SV RSP S
Tl BACEE | - 1 S c
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Reference flight condition flow incidence:

- 3 - ®
{9} = (v} + (0% + () (3.564)

Perturbation isolated thickness pressure:

. S
3}150 M {acp} u 3
{CP p =M =wt.g, (3.5-65)

Perturbation lifting pressure coefficients:

_ 1 A
{cply = [APe] ({e‘"}P + {fl,) + (’J’,[GApe],({e*}P

A int (3.5-66)
+{1}) M [y ]{?}“+{CP}P

Leading edge correction ternis, { D} and { D} p. are expanded in the following.
3.5.3.3 Expansion of leading edge corvection terms. -The expansion of the leading

edge correction terms is developed from tlie results of section 3.4.12. The integrated
incidence

{wI} = [I5C,1{¥}

contains the integrated inctuence due to rigid body motion of the aircraft. This incidence is

mren by {aw, } = {iEC} B {¥ }
I [» 4
a
{ll'-s-‘I Y= {LEC} B {¥_}
8
ne. } Z LLES} E {91
{&v :. { } Yx}~ . (3.567)
~
{fw. bz o{LIf} B{¥.y o=
-2 : [ |
and

-

AT - - O U .
(o ) = 1120h @ (vp)



where the column matrix {LEC} contains the chord lengths of the leading edge panels of

thin bodies. i.e..
—~ =

- - - (3.5-68)

e,
(@]
()

(c_}

and r A

C. ?

e
~ . . f omarote 3 ith nel row
{c.1 = . number of panels in i “'panel r

(2]

where G is the chord length ot ith lcading edge panel while the incidence matrices are those
ivea by equations 13.5-46) through (3.5-33).

L A - - -~ r b - 3
{wod. = [I8Z,.1{¥}, - {iw 1.
(3.5-00)
where
LS T S P -, -
[ERLR X = len_,JU + {lwl -3 + ¢l bt
] M - 1 I 1

The keading edge correction tor the reterence thight condition is theretore given

'»‘; - -, ‘. - ~ | Y I - N - —— s e~ -
A B A A T I L A ) < R O R PR P SR R
- - - - -
[P - .'.. -~ > £ - - ~4
DT = fnwlro s fon (3.5-70)
b - - -
where
- - 101
T e A U -,
[ - N
H :
S ) - - - 8 Tz §emToaee s -
-5 = L T ERGSY EE P .
z < < -
- P . r - . o~ - - -
! - H e . . S e - - = — - .
i L. - I K - - . IR RS



The perturbation leading edge correction appears as
- : \ aD
(D}p = [DpgJUThy - ([Apy12H) @ ({LECHE {7},) + {gghu

(3.5-71)
whee (D01 = (Cp)imlISCy] + {w halAyy]

wherein  {Cpt1 = fAp M{¥}.and {w,}, = LISCyI{Y},
and (30} - (vgp ) w (Tagg10¥11) + (T1sC,1(P1y) @ (cy 3

9ISC 9A

wherein .My 9 - M P6
Y {cpu} = gy Lsr—3{th

{w } = [
IPu Uy

The term{Ap, ] { ¥ Do ({LEC} ®{ ¥} p) contributing to the perturbation leading edge
thrust correction. equation (3.5-71). is expressed as » <um based on the expansion of the
flow incidence matrix given by equation (3.5-67): tius sum is given by

(D}, = [Dpllvl, + (32} u - {aD},

(3.5-72)
where
{an}, = {aD }a +{AD }8 + {AD_}p + {ADQ}q + {aDp}r
and (an,} =(tapgd(¥} )u (3wy )
also Ppel = [TRANS 100 o]

3.53.3.4 Formudation of the acrodynamic force }erivatives. - The aerodynamic force
derivatives are found by combining equations (3.3-61 ). 13.5-62). and (3.5-63). expanding
{¥m}pand {\i’g\q}p by substituting from equation (3.5-42). The coefTicients of the
perturbation moiion variables in the resulting expression are the acrodynamic force
derivatives relating perturbation aerodynamic segment forces to the perturbation moticen
variables. Perturbations to the total acrodynamic force and couple at the aircraft center of
mass are found by operating on {f}p using the rigid body mode shape matrix as in
equation (3.5-6). i.e.,

(3.5-73)

A

Y

=203*17%¢

'Y
.

r—
'y

[ R
[

et
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Finally, iF(A_. h, is transformed tc components in the Body Axis System in the
transformation

3.
(FA1, =2t 1Tiete G714

where

43 = 10T
Zeros 0-1 0O

| 0 0-1

- ' -

The resulting expressions, however. are not immediately useful because the elastic
deformation { 0* } appears explicitly. Explicit dependence on the elastic deformation is
eliminated using equations derived in section 4. Final expressions for the aerodynamic force
derivatives are derived in sections § and 6.

Moments about the origin of the Reference Axis System are obtained by writing [47!1' ]
of equation (3.5-5) in terms of the coordinates X;, Y;, Z;. This resuits in

| L

(FR) =2[$;]T{fA } (3.5-76)

where {F ﬁ} contains the required aerodynamic moments about the origin of the Reference
Axis System.
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4.0 STRUCTURES

4.1 INTRODUCTION

The structural equations used in formulating the FLEXSTARB system are derived trom
the classical. linear thenry of elasticity. reference 2-1. The derivation, based on the finite
element method. leads to structural equations of motion expressed in terms of matrices
relating structura! motions to the applied :erodynamic, inertial. and propulsion system
forces.

The structural motion was introduced in section 2.3 as a time-varying displacement
field,* viz..

d = dx,Y,2,t) (4.1-1)

This equation represents the motion of the structure of an aircraft relative to the body-
fixed axis systems (mean reference frames) introduced by section 2.2, In the finite

element method. the structure is subdivided into elements. and the displacement field is
described over each element by two sets of quantities: (1) simple functions of the Reference
Axis System coendinates and (2) the values of the displacement components at a small
number of element boundary points called nodes. The method yiclds equations which are an
approximation to the partial ditferential equations which govern the components of d in the
theoretical elasticity problem. The approximate equations trom the finite element method
are a set of second-order. linear. ordinary difterential equations governing the values off
time-varying displacement components 1t the nodes. These equations. formulated in terms
of matrices. are the structural equations o1 motion used in FLEXSTAB.

The equations of motion are derived n section 4.2 starting from Hamiltons principle.
relerence 4-i: this approach focuses the derivation on the Kinematics of the problem. This
starting point is chosen because the theory of elasticity used in the derivation introduces
unusual constraints on the motion. The constraints are limitations on the magnitude of
rotations of the structure relative to the coordinate system used in the analytical description
of the elastic theory. The derivation proceeding from Hamilton™s principle clarifies this
important point. The reader whe is not concerned with these details may ignore the
contents of sections 4. 2.1.4.2.2.3 4. 224 and 4.2.2.5. The remainder of section 4.2 is
sutficient for a descuption ot the FLEXSTAB svstem tormuiation.

Much of ithe remainder of section 4.2 s aimed at deriving transformations related to
the finite element method. Distributed applicd torecs. vizo, the aerodynamic surface pressare
and the mertial torces, are transtormed to equivalent concentrated torces applicd at the
nodes:displicenents at the nodes are transtormed to deseribe detormation of the acro-
dynamic surfaces and displacement ot the distributed mass. General methaods for deriving
these transtermations are developed o section 4.2 trom the basic concepts underlving the

*The notation tor Lagrangian coordinates XU Y, Z s deleted.
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finite clement method. These methods are applied in sections 4.3 and 4.4 to derive the
transfonmations for the specific finite element methods used in FLEXSTAB.

The FLEXSTAB system is formulated to tunction using finite element data from either
of two sources. One source. a part of the FLEXSTAB system called the Internal Structural
Influence Coefticient Method (1SIC). is derived in section 4.3. The finite element data from
this source is based on the structure’s being represented entirely as a collection of beams.
The second source may be any method which gencrates finite element data satisfyving certain
requircments of the FLEXSTAB system. The requirements on the finite element data are
delineated in section 4.4,

4.2 STRUCTURAL EQUATICNS OF MOTION
4.2.1 Hamilton’s Principle
The equations ot motior: for & flexible aircraft are derived in this section from

Hamilton’s principle. section 2-4 of reference {-1. For a flexible aircratt. Hamilton's
principle appears as follows:

t2 T2
é}{ (K-U7)dt + }' SWdt = (4.2-1)

t T

where K iy the Kinetic energy defined as

. . .. . 8 . . - .
U s the strain energy. and 4W s the virtual work of the applicd surface stress, Poand of the

. —~ .
aravity Jorces. o dVi e

+.2-2)

.
on
v‘.‘
@1

1H
—
N
L ]
CH
'3
A%
@)
)
1
—
Tt d

Fhe variation 8t is the first variation of the coordinates of the aircratt. ie..

(2.3-1

Trs e(uvitie

- < LR IR I B |
and the variztion is reuired to vae hat times 1) and T Animportant feature ot this
tormulation s that all quantities appearing in cquation 4. 2-Doancluding the strain cnergy,
are expressad moterms of the coording tes aiven by cquation ¢2.3-Tr 1oL posttion relative to
the Inertal Avas System. teare 2031



In the FLEXSTAB system the structural theory (and. therefore, the strain energy) is
expressed in a body-{ixed axis system and not the Inertial Axis System as required by
equation (4.2-1). The strain energy is expressed in a body-fixed axis system because the
structura! theory is based on the well-known approximations of the “classical™ theory of
elasticity, pp. 53-56 and 84-86 of reference 4-2. In part. these approximations relate to
rotations of the structure relative to the coordinate systcii in which the structural theory is
expressed, and for the approximations to be valid these rotations must be small. As shown
by reference 4-2. when a structure is massive (i.e.. having dimensions of the same order of
magnitude in all directions) its rotations are described accurately by the theory only when
they have the same small order of magnitude as the elastic elcngations and shezrs-0.005
radians for typical aircraft materials. Following the classification of reference 4-2. when an
aircraft structural component is flexible {i.e., having dimensions in one or two directions
which are small by comparison with the dimensions in the remaiuing directions such as
wings. tail surfaces, and slender fuselages) sections of the structure in directions of the small
dimensions may undergo rotations accurately described by the theory when the rotations
satisfy the less stringent requirement: small by comparison to unity. In either case. however.
whether the structure is massive or fiexible, the coordinate system used in expressing the
strain energy cannot be the Inertial Axis System as required by equation (4.2-1). This
conclusion follows because rotations of the structure relative to the Inertial Axis System
must be permitted to have arbitrarily large magnitudes in a dynamic analysis such as that
performed by FLEXSTAB.

Letting the coordinate system tor the structural theory be the Reterence Axis System,
table 2.1-1, the coordinates appearing in Hamilton's principle are those introduced in
section 2.3 as

>, -~ -~ » > . * »
rTXIYIZIE) = TI(E) 4 p(X,Y,2) 4 3(X,Y,2,t) (2.3-14)

where the coordinates J(X.Y.Z.1) depend on the quantities Ty (1) and &ty Ty being the
position of the center of mass relative to the Ineriiai Axis Svstem and wit) being the
rotation rate of the Reference Axis Svstem relative to the Inertial Axis System. The
coordinates d—.l X.Y.Z.t) theretore. must be subject to constraint conditions related to the
quantities T, and &: and the constraint conditions related to @et) v ust be such that
rotations of the structure relative to e Reference Axis Syatem have the degree of smallness
described in the preceding paragraph. The choice of constraint conditions 1s arbitrary
provided that they satisty this requirement of small relative rotations. The mean reference
rrame constraint copditions, equitions (2.3-18), are chosen for the FLEXNSTARB system. and
with this choice Hamilton's principle is expressaa as tollows:

rtz N f. 'f ,:2
oy z tee T . . } .
5| [¥-U+X e (! Zo ay+l, e () B vy )ae & ogugs =7 3..-3)
J J” Fal .0'_ Ial !
:X v . 71

—~ -~

*The notation tor Lagrangian coordingtes XO Y. Z s deletad.



where the components of—il‘ and -):2 are six undetermined l.égrange multipliefs; section 2-4
of reference 4-1, and the first variation of the coordinates is given by T 4.24)

§p°= 6r- + 6§xr + 63

wherein the variation 58 is the variation in rotation obtained as 5@ = J dwdt and 8d is the
variation in elastnc deformanon required to satisfy the mean reference frame constraint
~ conditions.

The variational pmblem posed by equation (4.2-3) yields structural equations of
.. motion which, fora complex structure like that of an aircraft, cannot be evaluated
~numericatly. To obtain equations which can be cvaluated, Hamilton’s pnnc:ple is expressed

~=in the form used in the fmlte element mf‘thod of structuml analysns.

422 L"Fir”lite Elemént Method

~ 7 The Ot;jective of the finite element method is to reduce the equations governing the -
'?jr'fmotions of a continuous, flexible aircraft to an approximate but accurate set of equations
involving a finite number of degrees of frecdom. The approximations used in doing this are
. consistent with those introduced for the aerodynamics problem of section 3. The finite
element method of structural analysis is. in certain respects, similar to the surface segment-
- ing scheme used in generating the acrodynamic influence coeflicients developed in
section 3.4.

4.2.2.1 Finite element concepts.—The concepts used in reducii:g the continuous
problern to the appmumate. finite element problem are introduced by reference 4-3 as
follow» e )

—T T
s T - .-.~~
- .;..:;,.

J" o T}g: &c@tmuour.strhcture is separated by imaginary lines or surfaces into a
N B, *a»gt %lte elements

-—

b;. Ti»> lvm‘ eRments are Jsmmcd to be interconnected at a number ol discrete
nodal points situsted on their boundaries. The displacements of these nodal

" points are thc?basm unknown quantities to be determined.

¢)  Foreacl finite dunem a function. N4 X Y.Z) (or functions \"(\ Y.ZN. is
chosen to aetine unigquely the state of displacement within tie cly.nenl in terms
of its nodal displacements, {53}, as follows:

. (4.2-5)
{a%1 = n%3(s2}

where the elemer of {d8} deseribe the state o displacement interior to the ath
finite element. Equation (4.2-3)is termed the displacement relation for te oth
tfinite clement



Structural motion was introduced into the kinematic description by equation
(2.3-14) as a time-varying displacement field relative to the body fixed axis . _
systems, viz.,

d = dx,Y,z,t).

The components of this vector field are expanded on the Reference Axis System,

section 2.2, as follows:

dy = dy(X,Y,Z,7),

X

dY = dY(X,Y,Z,t) s dZ = dZ(X,Y,Z,t) .
The displacement relations, equation (4.2-5), describe these componerits for each
finite element in terms of displacement functions which are independent of time
as follows: -

a - a a
d‘;(x,Y,z,t) = zlt N;i(X,Y,Z)Gai(t)
dZ(X,Y,Z,t) = gmgi(x,y,zm?(t)

where the displacement functions NX;(X,Y.Z), N¥;(X,Y.Z). NZ;(X.Y.Z) are
continuous functions of the coordinates for points interior to the boundaries of

the a'! finite clement and 82(t)is the it nodal displacement component for the
ath finite element. Equations (4.2-6) are formulated in terms of matrices as follows:

{a®%(X,Y,Z,t)} = [N3(X,Y,2)1{6%(t)} (4.2-7)
where
[ jz 1 P»a ‘-a s e a PR
c‘.; le NX: NXi —1
a = 4 a - 1 a e T~"a e
{a%} = dy | » (N®] = NY‘ NY2 Nos
d; l\‘a \:a voo e s e
i J L 2[ Z3 Z1 i
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The displacement functions (item c) define uniquely the state of strain thhm the

_element in terms of its nodal displaccments. The strains, thus determined,

_ together with the elastic propetties of the matenal of the element, define the state: :

e)

[}

of stress throughout the clement and at its boundaries.

* The.forces applled to the structure are replaced w'ih an equivalent set of
~_concentrated forces acting at the nodes. For the ath finite element these nodal

forces are denoted as {Q?}. and equivalence with the external forces is established
by the following virtual work relation:

sw = 6{621T{Q%}
- 5{6a}T(I in®1T(r%1av + f (82317 (p?}4s)
ya s

wliere & {53} ar virtual nodal displacements and the elements of {R2} and {P3}

are the components of body forces and surface tractions applied to the ath finite
element of volume V2 and surface area S2. Assuming the virtual displacements to be
arbitrary, the equivalent nodal forces are found as follows:

{Q%} = f [Na]T{Ra}dv +J [Na]T{Pa}dS (4.2-8)
v s

The total forces concentrated at the nodes { T¢ } must be in equilibrium with the
applied loads and the stresses at the element boundaries. Equilibrium of the ath
finite element therefore is expressed as tollows:
(4.2-9)
{T%} = [x®1(6%} - {Q%)

where {64} are the nodal displacements and { K} (a square. symmetric matrix) is the
stiffness matrix of the ath finite element. ¢f., section 4.3.1.5.
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g) A structure is represented by a number of finite elemenrts, and a stiftness relatxon
for the structure is assembled by combining the element stiffness re.dtions, i.e.,
equation (4.2-9). ‘The element stiffness relatnons are combined by imposing two’
requirements: (1) that the nodal forces be in equilibrium and (2) that the nodal
displacements be continuous. The resulting stiffness matrix is called the composnte
stiffness matrix.

-The operations leading to assembly of the composite stiffness relation are made
systematic by introducing the following notation. At the ith node of the structure

{1}

, {Q,} = _ components of applied nodal force

componentﬁ of total nodal force

{5) = components of nodal dispiacément
At the node of the ath f‘mitc element j;)ined to thg ith structufal node
| { 'If} = components of total nodal force*
{cf}

{8;l } = components of nodal displacement

compouents of applied nodal forces*

The nodal force quantities are set into correspondence by letting

f7;} (4.2-10)

z
_ r A8

where the sum is over all elements joined to the ith structura! node. The nodal
displacement quantities are sct into correspondence by letting

3 S (4.2-11)
{6}

where the equality is imposed for all elements joined to the ith st=-ciural node.
Equations (3.2-10) makc the nodal forces at the structural nodes the rosu'tants of
the nodal forces acting on the clements joined to cach structural node. while
equation (4.2-11) imposes continuity at the structural nodes.

*Correspondence with the notation of reference 4-1 is given by

Q%Y 2 AP+ (P} wna {78, 5



“The set of nodal displacement components for a structure with n nodes is
-contained in the matrix

{51}1
£5,1

(4.2-12)

{6} =

Or ses

while the sets o° total and applied nodal forces for the stiucture are contained in
the matrices i -

(4.2-13)
1] M
T2} {Qz}
{T} = : {Q} = :
L{Tn}J _{Qn}_

Applying the opcrations shown by equations (4.2-10) and (4.2-11), the finite
clement stiff ress relations, equation (4.2-9), are combined into a stiffness relation
for the entire structure 1s

AT} = [KI{8} - {q!

where the matrix [ K] —called the composite stiffness matrix —has elements
consisting of sums of the elements of the finite clement stiftness matrices [ K#].

Equilibrium is imposed on the structure by requiring the components of total
nodal ferce to vanish at cach modv. e,

{T,} = {0%.
Fhe composite stifthess relatior for the structure tollows as

{Q} = [0 {8} (4.2-14)

where the st of nodal forces {Q };m the forees which must be applicd to the
striccture to nwimntair the dformed shipe. When the structure is a free body,
these nadal fomes must be sed-equilibating, e, the total force and couple acting
on the structure must vanish,



h)

i)

The strain energy stored in the structure as 1 result of the elastn deformation {6 }
is given by

(4.2-15)

II—'

U = 2{53°[KI{8).

[

For each structural node (e g., the 1“‘ stmctural node; a rigid body mode shape
matrix [§;] describes the nodal displacement rate {S,R} duc to rigid body motion
of the node relative to any chosen point as follows:

. T s & 4.2-16)
{¢; 1= [3;1(8°)
he - .
where - - and,if dei
) dl . R ) {Gi‘} = o .
as )
Zo dys |
! - )
{B°} = Yo then _ _
= P ) _
Yo 1 9 Zi 0 0 -Yi
@' - - 5 EF,
Xo [¢1] = C 0 0 1 -Zi Kl
e! 5 S
Zo g 1 -X. 0 Yi ]
- . L - -

and dX, dY ,, dZ, »re the components of position and X, 0Y,, 6Z, are the
components of 1otation at the point relative to the Inertial Axis Systemn. The
velocity of a point interior to the finite element—analogous to that of ¢quation
(2.3-16)— is found from the displzcement relation (item c¢) as follows:

{ve} = [N®1CL8% + [F3UBE" D 4.2-17)

where




wlerein m is the number of nodes on 're ath finite element and the nodes are
numbered sequentially starting with i (

j)  The mass matrix describing the irertia propérties of the ath finite element. equation
L1.7 of refere. e 4-3. is called herein the nodal 1mass matrix and is defined as

[mgd = J' ‘[NaJTEpZJ[ua]dv‘ @18
VC
where
- -
pz(X,Y,Z) zeros
Leid = Py (X,Y,2)
Zerocs p:(X,Y,Z)

L. . : -

describes the mass density distribution of the element. It should be noted that the
- ne<C! mass matrix need not be a diagonal matrix.

k) The kinetic energy of the ath finite element, since { B'} is th. velocity relative to
“the Inertial Axis Sy: :m in item (i), is given by
4.2-19)
K% =

N 1

[ o ro2avtpar.
vé '

Hence, sabsiituting equation (4.2-17), it foliows that

K* = BRI IEMEY HE T mgIEy
+ 2811551731187 + L% e I0E5 105 T)

‘The torl xinetic eneray of the structure-i- sum of the clement kinetic
energics: hience, : :
B (4.2-20)

K= 203 1715,07In 06,1{87} + (8} Imy3(8)

-

+ (3

HE7T08,1 I, 38} + 308V Img10E,1137)

)
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)]

wheuc[msl'sthenodalnnssmuixforl!leenﬁltsmlcnneandforﬂniﬂ‘node
- a
[moS]i = t[mali
where the sun is over elements connected to the illl node. Also,
[(¢:1

Rl ¢220
: (s,

il

is the rigid body mode shape mairix for the entire structure having n nodes.

The final three terms of equation (4.2-20) represent the relative ki -etic energy of
the aircraft, a quantity also described by equation (2.3-8). This quantity is mini-
mized as in section 2.3.2 to determine V- and @—the velocity of the Body Axis
System relative to the Inertial Axis System figure 2.3-2. The e components of VC
and @ are contained in the elemenis of {B }- hence, letting [¢5I be expressed for
rigid body motion about the certer of mass, the relative kinetic energy is a mini-
mum with respect to the elements of {87} if

Ce 6IT[m 1{é} = {0} 4.2-22)
This resuit is the finite element analogue of the exact mean reference frame con- -
straint conditions, i.e., equations (2.3-17). Introducing the approximation of
section 2.3.2.4, the mean reference frame constraint condmons equations (2.3-18),

are cxpressed as e

(651 Img1{5} = {0} 4.223)

and the rigid body mode shape matrix is taken to be independent of tim* (i.e., the
coordinates X Y Z equation (4.2-16), .re constants) so that equation (4.2-22)
follows from equatlon 14.2-33) by differentiation with respect tc time.

When the mean reference frame constraint conditions are satisfied, the kinetic
energy, equation (4.2-20). reduces to

K= 387} 01(8) + 3(81TIm, 3(4, (4.2:24)

where

() = (3,1°0n,005,] (4.2-25)
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is the total mass-inertia matrix for the aircraft, viz.,

L |
M i zerss
I 1
) Y?
R F I (4.2-26)
M1 = 0
zeros 1 Irx - Ixe
y -1 I
| X YA
| i |

_In developing equation (4.2-23) from equation (4.2-22), the rigid body mode
shape matrix is treated as being independent of time. This assuiption is identical
with the assumptions made in obtaining equations (2 3-138) from equations
(2.3-17). Herc the assumption is scen to kead to moments and products of inertia
which are treated as indendent of time—a result which was evaluated in section
2.3.2.5 tor the case when rizid body modes are evaluated in the two cases:

(1) a steady reterence flight condizion and (2) an unsteady perturbation about
the reference flight condition.

4.2.2.2 Finite elem:ent approximations and structural reference frame.—Teo approxi-
mations are introduced when the finite clement method is applied to the FLEXSTAB system.
The first is inherent in the finite element method and stems from item (¢} of section 4.2.2.1.
When a structure is continuous, the displacement ficld which describes its deformed shape is
continuous and has continuous partial derivatives with respoct to spatial coordinstes. When
the structure is represenied by finite elements. the continuous displacement field is approxi-
mated and replaced by one which, in reneral, will have discontinuous spatial denivatives at
the boundaries of the finitc elements.

The second approximation is not inherent in the hinite element method but is introduced
when the method is applied to FLEXSTAB. This second approximation is introduced wher

puted from the displacement functions and when the state uf stress is computed. these com-
putations are bascd on the well-known approximations of the classical theory of clasticity.
As noted i section 4,21, these approximations require that rotations of the structure
tmeasurca relative to the coordinate system used in describing the structural theory - the
structural reference frame) must be very small. Motions of the structural referencs frame
rclative to the structure, however, are arbitrary provided the relative rotations have the
required degree of smaliness.

The arbitrary rigid body displacement of the structursal reterenee frame relanive to the
structure mayv be expressed as follows:

=% o+ 8 x ¥ 4.2-27)

-~
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where d,, is an arbitrary rigid body translation. G is a rotation having the required degree of
smaliness, and T is the position of . point in the siructure relative to the point of rotation.
Equation (4.2-27) is expressed in terms of nodal displacement .omponents by letting -

o (4.2-28)

{B} = d

| 92,
where dx,,, dY,,, dZ, are the components of translation and 0X,. 0Y,,. 0Z,, are the A
components of rotation of the structure relative to the structural refcrence frame. The rigid
body nodal displacement components. equivalent to equation (4.2-27), are described by

{3(R)} = [851(B} . 4.2:29)

where matrix [$5] is the rigid body mode shape matrix for the structure defined by
equation (4.2-21).

The signrificance of the rigid body displacement. eqration (4.2-29). can ncw be
described fornully by considering two sets of nodal displacm=nt components. {8 } and {6°}.
related as follows:

(6} = [3,1{8} + {67} (4.230)

The quantities {5 Jand {8} are the result of two different deformations diftering by the rigid
body displacement described by equation (4.2-29). The rigid body displacement, however,
is taken to be that of the undeformed reference shape of the aircraft relative tc which the.
components of {5} and {5’} are measured, figure 4.2-1. This deformation is illustrated in
figure 4.2-1 assuming that the elementsof {6} and {5’} contain only translation compo-
nents of displacement at the nodes. The two sets of nodal displacements are, therefore,
given by

and



where {x’} contains the coordinates of the nodes in the deformed structure while {X }and
‘ X'}nre the coordinates of the nodes in the tvro undeformed shapes of the structvre, C and
C". differing only by the nigid body displacement. Under these assumptions. regarding the
components of {8} and {5’} anu the interpretation of equatica (4.2-29), equation (4.3-29)
becomes : o

X"} - 1x} = [55]{8}. 4.2-31)

i

Equation (4.2-30) is genémted by subtracting equation (4.2-31) from tie identity

{x"1 = {x7} 7
This operation demonstrates that equation (4.2-30) can be interpreted as relating two sets
of noda! displacement components diftering by rigid body displacement of the unéeformed
sliape of the structure relative to which {s} and {8} are measured.

0y

Deformed shape

tIndeformed shape C

f Undeformed shape c’
"~
N ~
e
/

7 i node pomnt

"“is""""i"'\“z'.jé
= _ /.\‘ A

X, =X+ vi+ 2R
- A
X.= X5+ Yo Zk

(Xi. Yi' Zit and
(XY, Z)) are the
coordinates of the ith

nade in the Reference
Axis System.

FI11°/RE 4.2-1.—-RIGID BODY DISPLACEMENT OF THE UNDEFORHKIED
REFERENCE SHAPE OF A STRUCTURE
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- The small rotation approximation is shown to be contained in equation (4.2-30) by
considering the orthogonal coordinate transformation involving infinitesimal rotations, sec-
tion 4-7 of reference 4-1, viz.,

(%7 = (el + p1d) (X} + {da))

where{X Jand (X'} contain the coordinates of one set of node points but in two different

axis systems (vis., X,Y,Z and X'.Y'.Z") and{ do}, containing three constants for each node
point, represznts translation of the origin of the X',Y".Z' system relative to the X,Y,Z system.
Letting [€] and do}be such that the coonlinaus{ X')in the X'.Y’.Z’ system are identical with
the coordinates{ X }in the X,Y,Z system, the X',Y",Z" system is made to be fixed to the unde-
formed shape C". The result is an expression that can be made 'dentical with equation (4.2-31).
Equations (4.2.31) and (4.2-30), therefore, contain the same order of approximation as the
coordinate wansformation; namely, the angles of rotation are infinitesimals.

An important observation to be made in the above is the following: In equation (4.2.31
both{X}and{ X'} are expanded on the X,Y Z system; while, when equation (4.2-31) is con-
structed using the coordinate transformaii m.{X} is in the X',Y',Z’ system fixed to the
undeformed shape C’ while{X }is in the X,Y.Z system fixed to the undeformed shape C. That
this differcnce in coordinate systems produces no ckange in the expression for equation
(4.2-29) follows from the analysis of section 4-7 of reference 4-1. Thus analysis shows that if
the coordinate transformation of section 4-7 oi reference 4-1 is applied to either equation
(4.2-29) or equation (4.2-30), the forms of these equations are unchanged. The elements of

{6'}anc {8}, therefore, can be regarded as expanded on either coordinate axis system with no
change in the form of equation (4.2-30). This equivalence is uscd in the following where the
X,Y,Z system is taken to be a mean refcrence frame while the X'Y',Z’ system is taken to be

a structural reference frame. The structural reference franic is used as a coordinate system in
describirg the elastic properties of a structure.

Throughout the remainder ~f section 4, the Reference Axis System is used interchange-
" ably as a mean reference frame and as a structural reference frame but only whea using it as
a basis for expanding the components of nodal forces and nodal diaplacements. This inter-
changeability is valid because of the observation in the preceding paragraph. A separate
coordinate system, identificd s a structural reference frame, is not required and is never
introduced. Nodal components or force and displacement will be expanded using the Refer-
ence Axis System as a basis; at times the Reference Axis System will be a mean reference
frame, whilc 1t other times it will be a structural reference frame. '

In section. 4.2.2.5, the elements of lB }arc expressed as a linear comtination of the
L . -
clements of { ) } Equation (4.2-30) is then expressed as

{8} = [TI{&"}
where the transformation involves orthogonal transtormations introducing arbi.rary transla-

tions but only infinitesimal rotations. Using the concept of virtual work, the applicd nodal
forces are found to be transtorniod as

(371 = (71001
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The two preceding equations may appear to be only coordinate transformations: but. from
ute above, it is clear that [6' and l&] are the results of two physically different displace-
ments. In the following {Q"} and {Q} will be shown to represent two physically dif .erent
sets of nodal forces. This physical ditference depends on the particular finear relat.onship
choszn to relate the elements of {B ) to the elements of {8°}. There are any nur.ber of
choices for this linear relationship —three of them being shown on pages 4-6 of reference 2-4.

If equation ¢4.2-30) is subatituted into the compasite stiffness relaticn. equation
(4.2-14). it follcws that

3]

(Q} = [KIl 1Lz} + {671) 14.2-33)

[x3{s~°1}

-3 .
The product of the stiffness matrix onto the rigid body mor'c shape matrix vaaishes because
a rigid body displacement of a sttcture. when it is a fp*. body. requires no chaoge in the
applied nodal torces. i e.. o

>
(@)

b= [K)1g,1{B}

Also. because the stiffhess matrix is synuretric. the transpose of the above equation leads
the following expression:

’ L - (4.2-34)
{B: [e51°[K) = (2}°

Introducing e transformation of the nodul forees. equation (4.2-22). into cquation (4.2-33),
it follows that

1}y = rr1%KICTIE) 4.2-33)

This equation. because the p.oguct [K1{@g) vanishes. immediately reduces to

{27} = [¥1{67}

This result shows that “he composite stifiness matrix is invariant wader trnsformations
ot the tepe under consideration. As « result, the elements of the matein ( B} may be arbi-
trariny hiwen provided the components of rotation X, 8y . 07, equation (4.2-23), have
the required degtee ot smadiness desciibed insection 4.2.1. The elements of { B, are deter-

mined i the liowing using the concey ts aeveloped in section 2,32,

40200 Hamdeonis pringiple dn tindre clement p-0m. Fach of the quantities appearing
it s hos's princivie. cquation (4. 2-3 imcludine: the constraing conditions, are derived in
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Consider firs: the kinetic energy, K, with the velocity expressed for an observer in the
body fixed axis systems, equation (2.3-16), i.e..

3 ar’ (4.2-36)
R AP . R

=3 e @ F gD e B xE e fngar.
v

When &?‘Jdt and & are taken so that they minimize the relative kinetic energy, this
expression becomes ) 4.2:37)
<> >,
dr” dr , 3 3
1 o > .. o > -+ + 11 & . é
= [ (E_ + @ x r) (d_t + w X r)pAdV ilv
v

The final term of this expression may be replaced by its finite element analogue, item (k)

> > (4.2-38)
[ ¢

K= 3 (248 x B2+ b x Papyav + AT ImgIC8)

dt dt
v

Consider, now, the virtual work of the applicd forces—equation (4.2-2). This quantity
is expressed in terms of finite elements using item (2) of section 4.2.2.1. The virtual
displacement of a point in the structure is given by equation (<-.24), i.e.,

60 -= 6?5 + 3 x 7+ 84 (4.2-39)

where
88 = f&[ﬁdt

is a virtual rotation. The virtual work of the applied forces is now expressed as follows using
equations (4.2-2) and (4.2-39):

2
x - >, % Y ? X .. (4.2-40)
8W = (F_ - ME)+4F. + M &G + «8ad5s
] ~ S

where

is a resultant force at the center of mass and
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is 2 resultant couple at the center of mass. Introducing the displacement relations, equation

(4.2-5). the virtiat work is obtained in terms of applied nodal forces, ejuation (4.2-13). as

follows:

s = (F_-ug)ear; + M6l + (051 s(6} (

where the elements of {Qs} are the nodal forces due to surface tractions, viz.,

() = [Satnle{Pa}ds

with the sum over all elements having nodes at the ith structural node.

Hamilton’s principle in the form given by equation (4.2-3)is now expressed in terms of

the finite element method as follows: (4.247)
ar’ ar”
t 1 o > >, o > +> T 2y
- 6[1:1 7[[‘,(3:&— + @ X I‘)(a-_t':— + w x I‘)OAdV + {&} (mal{d}

t2 - > - > .
[(FC-Mg)-arO+MC-6§+

- 6YTrKits} 1at + [
t

+ 1% stshae + [ 007081 mglet6)er = 0
T

-t —
where { )\} is a matrix of six Lagrange multiplicrs replacing the vectors A and X in
equanon (+.2-3) and multiplying the constraint conditions in the tinite element form given
by equation (4.2-23,.

4.2.24  Derivation of the equations of motion. -Carryirg out the variation of the
Kinetic and strain encrgies and integrating by parts, equation (4.2-42) leads to the following
vartational equation:



2

T2 d I‘; -> -}g - - > > > (4.243)
— - I S S Y e .
Itl{[Mdtr + Mg c] ér] fv.w x r)e§(w x r)oAdV

- Fi s+ 08" Img] + (637 1K1 - {Q°118(6}-

- (g1 g 1861 at = 0

The Lagrange multipliers may be so chosen that equation (4.2-43) can be expressed as a set
of equations, viz.,

arr; . (4.244)
M— + Mg = T
d.tZ Cy
t2 > > - > > -
. L V(m x r)ed(u x r)pAd‘.’ + Mc-éﬁ]dt = 0, (4.2-45)
1

and

- . _ (4.2-46)
{2,106} + [KIL6) = £Q°} + [m,1{§ ()}

Introducing the Kinematic approximation of section 2.3.2 .4, i.c.. ignoring variations in
the moments and products of inertia, the variational quantity

ta

| ] @ 91 x strpgavar

tW'V :
1

is ignored in equation (4.2-35). As a result the first term of this eq'.....on may be irtegrated
by parts with respect to time to obtain

t2 > . > > > -
){ (w x rYel(w x r)dt = [r x(w x ;)]'Gﬁlff
t )
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The variation 58 vanishes at the instants of time. t} and t7; hence, this result is used to
write equation (4.2-44) as follows: )

t2 -> d -> > > -
Ll[j r xa—t-(m x ?)pAdV-MC]-G&.‘dt = 0

Now, because the components of 62 can now be chosen arbitrarily, it tollows t1iat

4 - (4.247)
-> > »> >
IV r x a-t—(m x r)pAdV = Mc

The kiiematic approximation of section 2.3.2.4 is seen to eliminate the mechanical coupling
between the elastic deformation and the rotational motion of the aircraft. This conclusion -
follows from the fact that equation (4.2.47) is simply the vector form of Euler’s equations
of motion for a rotating rigid body, equations (5-34) of reterence 4-1.

4 225 Evcluation oy the Lagrange multipliers.-- A< pointed out in section 2-4 of
reference 4-1, the Lagrange nultipliers have a physical significance. The term containing the
Lagrange multipliers in equation (4.2-46) can he identitied with forces of constraint. If
equation (4.2-46) is premultiplied by the transpose of the rigid body mode shape matrix,
equaiion (4.2-21), the terms on the {eft vanish by virtue of equations (4.2-23y and (4.2-34)
yielding

(4.248)

(35,1755 = - oy

where [M] is the total mass-inertia matrix of equation (4.2-26) and the operation on the
left yields the resultants of the applied surface forces at the center of mass of the aircraft,
le.,

{F} = [56]T{QS} (4.2-49)
where, for the choice of {¢g1 shown be cqudtion (4.2-16).
X
Z

Y

F
F
M
{r_} :
- F

Y
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The Lagrange multipliers are found from equation (4.2-48) as

1 (4.2-50)
0} = - DA7HE )

Equation (4.2-50) can be interpreted as showing that the Lagrange muiltipliers represent
components of rigid body acceleration relative to an inecrtial reference frame. If the inertial
reference frame is taken 10 be the Inertial Axis System, then

. (4.2-51)
{x} = - {B7}

where {87} is the matrix defined by equation (4.2-16}. Ths is a correct interpretation, how-
ever, only at the instant of time when the Inertial and Body Axis Systems are coincident.
The Lagrange multipliers, therefore. must be interpreted as representing components of

rigid body acceleration relative to a portable axis system of the type introduced by section
2.3.2; specifically, the inertial reference frame is taken to be a nonaccelerating and non-
rotating axis system coincident with the Body Axis System at any instant of time under
consideraticn. This interr,ctation of the Lagrange multipliers leads to equation (4.2-48)
being viewed as rigid body equations of motion based on @ kinematical descripti~ consistan:
with that of section 2.3.2. I

pos

Combining equations (4.2-49) and (4.2-50) with equation (4.2-46), the structural
deformation of the aircraft is found to be governed by the following expression:

[k1{s} = re1 Q%) - tmdj"é} (4.2-52a)

where
[P = [[T3-[mglLF,10x17 05,173 (4.2:53)

The matrix [P], a singular matrix, is seen to incorporate the inertial forces (including the
gravity force). This matrix incorporates int¢ quation (4.2-52) the forces of constraint,
i.e., the 1inal term of equation (4.2-46). This term is now written as

. = trya=lr= 1T, S
{07} = - [m5][¢6][r1] [@6] {Q°}

and represents forces usually interpreted as “inertial coliet™ forces. Also, equation (4.2-52a)
can be written as

[K1{s} = [21C{Q°}-Lm, I(8D) (4.2:52)

because

[PJ[mél{E} 2 [mSJ{S};
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_ The comuents following equation (4.2-32) in section 4.2.2.2-are borne out by the
above results. The two sets of nodal force compouents { Q } and { QS} a~2 related in the -
above as in equation (4 2-32) with the transformation matrix [TlT replaced by the
transformation matrix defined by equation (4.2-53), i.e.,

{Q} = (#1{Q%}.

. Also, there is a physical difference between the forces {Qs} and the forces {Q}. They
. differ by the inertial relief forces, i.e., - :

Q) - Q%) = - Imy 08,2007 7, 1THQ%Y - Imgl(6)

~where the first term on the right describes the inertial nodal forces arising from rigid body
- acceleration. This physical diff:rence is the result of huving chosen the mean reference

~ frame constraint conditions, ec uation (4.2-23), as the constraint conditions to be used in
expressing Hamiton'’s principle ia the form shown by equation (4.2-42)

~Referring, again, io the comments appezring in section 4.2.2.2, the elements of the

- matrix-{.B } appearing in the r.odal displacement cotnponent relation given by equation

‘ (4.2-30). are Linearly related by the cons’raint conditions to the nodal displaccment

. crmponents {8”}. This linear relationshi» is found by premultiplying the mat.ix [765]1 [mg)
onto equation (4.2-30) and by employing the mean reference frame ~onstraint conditions,

_ equation (4.2-23). The result is given by '

(B} = - 0731 ing 67

and, on substituting this result into cquation (4.2-31)), the two sets of nodal displacement
componet .ire related as - ' '

{63 = [P1T167},
This result ensures that the undeformed shape C, shown by figure 4.2-1, viz., the reference
shape relative to which the displace:nent components of {5 } are measured, is a mean frame
of reference. The undeformed shape C’, viz., the reference shape relative to which the
displacemznt ....:nonents of { 6’ ure measured, is, as yet, undeiermined outside oi :he
requirement that C and C” differ at most by an arbitrary, but infinitesimally small, rotation.

In using Hamilton’s principle to derive the equations of motiqri in the form given by
equations (4.2-44), (4.2-47), »nd (4.2-52), the form nf the derived equations of motion is
seen to depend on the choice of the constraint conditions. The derivation makes it clear that
the form of the equations of motion is not arbitrary once the conditions are chosen for
determining the elements of { B} in equation (4.2-30). If, for example, the elements of {B }
are set to zero and the undeformed shape €' is constrained to selected nodes of the structure
(the Attached Axes of section 2.1.4 of reference 2-4), then the form of the equations of
motion will be simidar to those above but the physical significance of the matrices, particu-

-larly that of the inotion variables, will be changed.



'The only arbitrariness remaining in the formulation, after having chosen the mean
reference frame constraint conditions to be the conditions for determining the ele ments of
fB}, is the undeformed co-figuration C’, figure 4.2-1, relative to which the nodal displace-
ment components {8'} are measured. in the FLEXSTAB system, the undeformed shape C’
is determined by choosing six nodal degrees of freedom, represerted as the elements of
{SR } which, if set to zero, constrain the structure from-rigid body motions. The undeformed
shape (™ is 1ined relative to these nodal degrees of freedom; thus, because C’ is arbitrary,
the particular choice of the six constrzining nodal degrees ot freedom {4 R} is arbitrary.
These operations are described in section 4.2.3.1.

4.2.3 Equations o. Motion for the Steady Reference Flight Condition .

Under the assumption of steady motion, all *ime dependence apparent to an observer - - -
in a body-fixed axis system vanishes. The equations of mction (equations (4.2-44), (4.2-47)
and 4.2-52); : en reduce to the following: B

(4.2-54)
. >
M‘Gl tx vc .- + Mgl = ?Cl b .
J (4.255)
> > > > ~
Iy, ™1 x [ x {wy x rl')]pAdV = Mc1’
and ;.~_ﬂ
V - :1 S .
[K1{8}; = [P21{Q }:1 _ (4.2-58)
or ¢
[K1{s} = {Q},
since -

Sy -
[PJI{Q } «{Q}x

where, as pointed out by the discussion concerning equation (4.2-53), the matrix [P},
introduces the effects of inertia. Equations (4.2-543 and (4.2-55) govern the st2ady ¢ waon
of the aircraft moving as a rigid body, while equation (4.2-501 zoverns the steudy e mas -

d:formation of the aircraft. Equations (4.2-3 ') and (4.2-55) are expressed in the Bow: 4.5

System, figure 2.2-1: while the structural equations, equation (£.2-56), are expressed in the
~ . N -

Reference Axis System, figure 2.2-2. The components of u, force and coaple. by and

MCy.are computed from forces at the structural nodes by the operation shown by Juation
(4.249): 7
(4.2-57)



- where [65 Iy isthe rig.id bodv mode shape matrix evaluated for the reference ilight

- condition :ma .
- Fx

0
[T
m

. i

o L g

Lare ae components of t.2 forcz and - v -*> acting at the center 6f mass—the right hand
members ot equations (4 2-54)and 3

4231 Structural ~¢:: mi0rs in 2 orms of fexibilicv. —In the apuy sis to follow. the -
deformation ¢ tite structure {0 } must be expressed s an explicit function of the applied
loads. Th= “tpicturalequaticns, equation «4.2-56), wherein the deformed shape {8} isan
unknown Quantil'i. th.orefore. are solved in the following to vield the deformed shape in

- terms of the apolied ouds 2nd the flexibility maunix. i

The structurs cquauons are sohed by Lssuming that the stiffness matrix [K] is the
icsult of having perfor ned a reiuc . on on another stiffness matrix mummg six rows and
columas, The stiffness matrix 1K Y, therefore, is defined as

[ ) _1 a (4.2-58)
f - -r; = ES :
tx = LK 1oL 5 Tk 17 K

witere the o trices nppearing on the right are partitions of the stitfnie 's matiix appearing in
. i 14 : - ."" . : | M .

th folno\\ Ire iffnas relation - r -
] {5}

- (4.2-39

} (g, [¥ppd| | {85)
L _ L 4 L Jd-
I e clemeats of the nodal displaceinent matrin {8 } are six in sumber and represent six
cegrees of freedom which. if tor - iod. constrnin the stroc ure agacrd all rigid body
Dotion exeen' izt which gives i 2 oo structural serain. The nodai forees { QR } are the
tor...s at The consirained nodes. and these forces v sn it the structere is a free body. In the
cos - of uhoaireradcin flight  a free bedy so tnat {(\:}Lquab [Pl i()s} equation (4.2-39) is
rduced tooequat on (4.2-36) with the stiffress matix given by equation (4 -58).

RS
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The stiffness matzix [Kg51 is nonsingular and may t.. inverted to obtzin the ﬂexibiliiy
of the constrained structure as follows:
(4.2-60)

{57} = [C]{Q}

where

: -1
~} =
(21 = [K,,]
“and {3 '}are the nodal displacement components measured relative to a structural reference
frame fixad to the structural constraints. Introduci '« the coordinate trensformation given
by equation (4.2-30). equa.zion (4.2-60) is expressey 4s -
: 4.261

{63-[3,1{8} = [CI{g]

where the elements of {B} may be arbitranly <mecified provided the requirements of section

4.2.2.2 are saiisfied. Using the approximate torm of the mean reference frame constraint

coud.tions. equation (4.2-23), ie.,

(4.2-25). to find .
. 23 = aT . (4.2-62
b} = - M1 [51 [mg {0l ’
Substituting this result into equation 4.2-61 1 leads 1o

— (4.2-n3)

{3y = [(P3°[21{%}

gt

where tiwe transtormation moinix [PVis that given by equation (4.2-33),

4202 wermad relief. - When the operations leading to equatios (4.2-03) are applied
to the structural equations for an sircraft in flight. ie.. equation (4.2-36). they are found 1o
vicld the tulowing.

5 4.2-
1,075} oh

where



The matrix [E ]} is termed the “free-body ilexibility ™ matrix and. like the stiffness matrix
[K] for the structure as a free body. is .ingular. The post multiply by [P] | introduces the
inertial forces. As previously noted. this is lermed inertial relief.

4.2.4 Equations of Motior' 101 the Unsteady Pe-turbation Flight Condition

Equations (4.2-44). (4.247). a, 1(4.2-52) will now b specialized for the case of
unsteady perturbation motion relative to the steady reference motion of sectior; 4.2.3.

Letting d;'
dt cy ~Ps
+> > + -+
) - \]
N N

ana

{6} = {8}, + {6}p,

leads to the following perturbation equations of motion:

o
M(—S2 ¢ 3 F o i " Ty - 4.2-66
M= + &, x Cl*h‘x"cp"meﬁcp.}gp)-?Lp’ ( ;)
- SGD > - *> -+ - - -+ -+
ry -« [—SA‘: xpry +wp*(w_ x vy) oo x(wy x ry) + 4.2-67)
1 L i 4
'}
<> - -+
towp < (3 x r;)]pAdV = M_p
and

[=,3{3}, + [K1s}, = [21,0Q%),. (4.2:68)

Equations (4.2-06) and 4.2-67) are the perturbaticn equations of motion tor the aircratt
moving as a ngd body whiie ee 41 £4.2-68) governs the unst:ady perturbstion motion of
the structure.

4241 Free vibration mode shapes  In the dynami: analyses performed by the
FLESSTAL system the nodal displacenzents {8 }are transformed as tollows:

[g} = [{253{3} i4.2-69)



where the columns of the transformation mairix [é5] are the free vibration mode shapes or
the structure and the degrees of freedom { u } are the amplitudes of the mode shape
deflections. The free vibration mode shapes are solutions to the eigenvalve problem posed
by the structural equations of motion. equation (4.2-68). when the applied nodal forses

{ QS }p are set to zem and when the structural motion is assumed to be hammionic. i.e..

([xl] - mZ[mG]){GG}: ) 4.2-70)

where o is the trequency of the harmonic motion. equation (1 1.11) of refereace 4-3. The
transtormation matrix. equation 4.2-69). therefore. is given by
4.2-7D)
(651 = [{5 }1,{8,}2,00]

whete 1'50}]' is the j(h eigenvector (or free vibration mode shape) haviag the natural
frequeicy ;-

The free vibration mode shiapes are found to have the following properties:

.T ) 4.2-72)
{ e i = W™ when r=
Lﬁalr[:sé]lﬁo_s ¥ r=s
= 0 when r # s
2T - - 4.2-73
(8¢ im1lo,1 =€ for all r ( )
m . (3.2-74)
ig Y- [¥]{&a 3} = X. when rss=;3
R r[.]{-ofs 3 3
= when v £ s
(4.2-75)

1]
D
vy,
0
s
i
’_.l
=~
"

{50};[14][35] o

whore equations (4 2-7 3 and (4.2-75) follow trom equations 4.2-23) and (4.2-3-8). When
the transiormation, equation 4. 2693 iy substituted irto the structural equations
motion. equation (4. 2-08). and the resalt is multiplied by the (ranspose of the wicde s apes.

the above properties lead to the tollowing:

ir) {QS} 1.2

L}
-~
“©r
(&)

Pmdf)_ + MK{u), =



Fquation (4.2-76) governs the structural ‘notion described in terms of the generalized
coordinates {u }p: and. when the motion is transformd to the coordinates {8} p by
equation (4.2-69). the motions represented by equation (4.2-76) are identical to those
represented by equation (4.2-68)—-nothing is lost by the transformation of coordinates

introduced by equation (6.4-69) provided [¢5] contains the complete set of modes.

4.2.4 2 Structusal equations of motion in terms of flexihility. —When the structural
equations of motion as given by equaticn {4.2-68) are multiplied by the flexibility matrix
[C]. equation (4.2-60). these equations become as follows:

{87}, = [CIPL(1Q5Y, - [ag)Ls}y). 4277)

"y

Introduciug the coordinate iransformation. equation ¢ 1.2-30), determining the components
ol’{ B} using the approximate mean axis system constraint corditions. equation (4.2-23).
leads to structural perturbation equations of motion expressed in the following form:

= [c Sy - 8 (4.2-78)
(8}, = [C11CiQ®}, - [mg{8}p) |
where the flexibility inatrix. IC I 1. is the free-body flexibility matnx appearing in equation
4.2-61).

4.2.4. 3 Residual flexivility formulation.—It the siructural equations of motion given
by equatic.. (4.2-76) were used in the FLEXSTAB system analysis without modification.
then little or vio advantage weuld accrue from having infroduced the transformation to
free-vibratics modal coordinates. The number of elements contained in { u } tre the

" number of dynamic. structural degrees of freedom) is only six less t..an the number of
clements contairad in {6}: haviug transiormed the problem to the generalized coordinates
{u } the only ssmplification aclieved is the elimination of six rigid-body degrees of freedom.
the prirnary reason for expressing the problem in terms of free-vibration modal coordinates
is to allow an analvst to compare the orders of magnitude of the terns in the cquations of
mot:~n and simplify them by climinating negligibly small terms.

FEEXST AB analysis is aimed primarily at evaluatiag the stabi®ty characteristios of’
la co rirerift. The motions under evaiwsiion, therefore. are genialty fow treguency
motic s I a large aircratt is subjected to high frequency. unsteady acrodynamic or
propuision system loads. the ngid-body motion is virtuailhy unaffected. The vominant
FeSPOnSe G an aireralt to high treauency uasteady loads occurs in the structural tree-
vibration modal degrees ot treedaor, having natural frequencies nearly equal to those of the
higl fl~‘«il:t‘!l(_\ applicd loads. Since the FLEXSTAD analysis is aimed ot evaluating only fow
frequencey response. high frequency unsteady loads ire completay eliminated from the
analy ical represcatation. Because high frequency motions are eliminated. cquatiors
(4. 2" are dividad into two parts s tollows:
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mel{ux}p + tKIJ{ux}P = (tbGl]T-"_fs}p 4.2-79)

and

Bm, 12}y + Eadlualy = Loy 1T0Q%1

witere {u}} are the modal degrees of freedem whose natural frequencies are small and {u-}
are the modal degrees of freedom whose natural frequencics are farge.

The dynamic (or mod.l inertiz) terms { u» } may be neglected as negligibly small: even
50. the modal degrees of freedom {u:} may have pronounced effects on the characteristics
of low fiequency rigid-body aad structural motions. The second of equations (4.2-79),
neglecting {32 }. describes the following quasi-static elastic deflections:

{821, = [o; TCK2I Log 1(Q%} . (4.2:80)

Tie detlections {b_}}p are a conseruerce of the applied loads {QS\P and the flexibility of
the structure associated with the high freq ency maddes, viz..

s
My
[
I
—

Ecd
[ -
>
o
v.
=

¢

(4.2-81)

The influence of the deflections {81} or low trequency acrodynamic forces is readily
illustrated by the acroelastic chazacteristics of a tvpical aircratt stabilizing surface. e.e..a
conventional horizontal tail surface. figure 4.2-2. The section ¢+ ter of mass of such a
surface often lies very close to the eiastic axis. The inertial couple producing torsion about
the clastic axis is small for these surfaces. and the twisting motion of the surface is
contained in a free-vibration mode shape having a large natural frequency even though the
torsional stiffness of the surface may be only moderate. Low freauency motiors such as
nlunge or pitch of an aircraft or motions in the low freque.cy iree-vibration m wdes canse
unsteady angle of attack changes at the horizontal tail surta.e and. theretore. hw frequency
urnteady nressure distributions which may preduce large torsional couples abeut the ehastic
axis. Since the inertial couple arising from a rototional acceleration of the surface i~ small.
the twist of the sutiace is very nearly in phase witn and proportional to the low trequency
unsteady acrody namic pressure distribution, e | the aerockastic twisling accurs gisisi-
statically . Quasistatic deformation of thes tvpe can have a deste influence on aircralt
~tabtlity and controtand may greatdy alter the MMutter and response characteristics of the low
trequency structural mode shapes. The acroelastie effects introduced by equations ¢4.2-80)
e retned i the FEEXS FAR svaiem analysis,
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Surface elastic axis \ \

Horizontal

tail surface
Locus of section
mass centers

FIGURE 4.2-2—EL ASTIC AXIS AND LOCUS OF SECTICXN MASS CENTERS OF A
TYPICAL HORIZONTAL TAIL

Assuming that a low frequency unsteady loading is characterized by a frequency . the
eyuations of motion for the high trequency modal coordinates. viz..

- “q- -1 AP
(ugh, + Buzdiuzky = £2,17 08, 1°40°h
wheve - -Lp,
fu;l = hzl tr(z;] {4.2-82)
are closely approximated by the tollowing:
2 “‘v- W':PAS‘
€= [I] + Peaddlualp = Bnad T 0s, 170770

This approximation is valid i the elastic deformation represented by {8~} has the
charactenstics described in the preceding example. Thg; value of w is small and w- is
neghigible compared with the diagonal clements ot w3y beuztion t4.2-820 theretore.,
reduces 1o the following approsnmiate expression used 1o form cquation 4. 2-80)

L

L I )



The flexibility associated with the high frequency modes. equation (4.2-81). may be
coriputed as a residual. The total flexibility of the structure as a free body. viz.. {C].
de fined by equation (4.2-64). is equal to the Fexibility represented by the complete set of

free-vibrotion modes. i.c..

[C1 = Co itk Lo 17,

VWhen the modes are separated into two sets 1651 and |¢5-1. the expression is given by the

following:

[€1 = s, JEKd7 L3y,

The {lexibility of the structure represented by equation (4.2-81Vis computed as the

following residual:

. - . -1
sl - I - d‘\ ~ 5 - r 5 _ -
[c ] = £C1 - [o; 1K Tog ]
The structesal equations of motion. theretore. are expressed as
I - +r I — ]T T~ S ~
:’.llxul}p"" E!\IJL‘CX}P' [Lé _'Lv_‘ J’P
‘ § ~ 7:aS
and 18, s 1C, 1125y,

where the residual flexibility [Cr] is computed using equation (4.2-83). The 1otal

perturbation deformation is now cxpressed as

R o~ S . o
ST S5 LL I ST LI

or. equivalently *

(6" = 121(~Img Lo, 11

-~

1

17+ Lo 1Ex, 17

t4.2-83)

(4.2-34)

oo+ 1Q%1) + Loy lu bp,

*
i ' development 'eador mo equation (4.2-84) no consideration has been given to

aerody nannic inertial, damypy wd sttness torces. Those quantitics are intraduced in

section 0. The order of magnivade comparisons which lead to equations (3.2-84) tacitly

assume neghgible ntlience from serodynamic torees on the low fregacnsy resnonse o, the

<racture w the {u >} modal degrees of freedons the aerody namic damping and inertial

torces nduced by high frequency variations ot the moddal coordimates {m} are asstawed
to he neghiblhy small by comparton with the aerodyaamic and structurad stffness forces

refated 1o the {us coordinates.

e inertial torces o mode aceckeration ore retamed ¢ oolurme Teven thoueh they de

nol contribule to ( f)}p i cquatien (4 2-85),



4.2.5 Sumplitication Using the Symmetry of an Aircraft

Using the geometric, structural. and inevtial symmetry of an aircraft. the structura!
equations of motion ar: separated into symmetric and antisymmetric forms. The stiffness
refation. equatiun 14.2-14), is expressed as tollows:

(4.2-86)
symmetric form: {Q}S = (Ki S{é }S

antisymmetric form: {Q}N = (K1 {8}

The nodal displacements ({5 }S and {8}A) and the applied nodal forces ({Q}S and {Q}A)
dre expressed for node points on the plane of symmetry and on the right-hand side of the
structure only, figure 4.2-3.

For the sy tnmctne form. the nodal displacements and forces are assumed to be
symmetric functions of the Y-:oordinate. At node points on the plane of symmetry. nodal
displacement components corresponding to dy. 0. 67 are zero and do n-:t appear in | B}S.
Under deformation the plane of symmetry may stretch. but it remains a plane. The
components of nodal force corresponding to Fy. My. Mz are set to zere at the plane of
symmetry and are removed from {Q} in {orming {Q}S. At node points off the plane of
sviemetry the following relations are assumed satisfied:

rdx ] Fi;.; ] [+ ] [ 7 4.2-87)
dY -d\:' ?‘._. =T,
d2 | e . o
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i
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FIGURE 4.2-3.—PLANE OF STRUCTURAL SYMMETR



where the subscripts R and L denote evaluation at the ith node on the right and the
symmetrically located node on the left, figure 4.2-3. The aircraft structure takes on a
symmetrica'ly deformed shape. the net force on the aircraft in Y-direction is zero. aad net
moments ibout X- and Z-axes vanish.

For t}e antisymmetric form, the components of nodal displacement dx.dz and Ay
and components of nodal force Fy. Fz and My are set to zero at nodes on the plan: of
symmetry and do not appear in {8 }A and { Q}A. Under antisymmetric deformatic', the
planc o' symmetry warps but does not stretch. At nodes off the plane ot symmetrv the

{ ing relati e isfied:
followng relations are satisfied (4.2-88)
o — p— 1" pan— — p—— ﬂ
dy ~dy Fx -y
-
%y dy Fy Fy
a1 . 179 nd RT3 N
, = o ! =
O "z, My My
0. -0 ‘1M M,
E. Ey |y 7
O ’OE,, Mz I M
-1 R ¢l L R L
L. —d b s - — L. - -

The structure takes on an antisymmetric shape, the net forces .n the X-and Z-dir¢ctions
vanish and the not moment about the Y-axis is zero.

L ~ing the above arrangementi. the equations of motion in sections 4.2.3 and 4.2.4 are
separated into svmunetric ard @ tsymmetric torms. In licu of a single set of equations
expressed-in terms of nodal displacement and force components‘al no.des on both sides of
an aircraft, two sets of the structural equations of motion are obtained ‘n *erms of the nodal
quantitics on the plare of symmetry and on the right band side of the &° L.aft only.

4.2.6 Detormation of the Acrodynamic Surfaces

The boundary conditions tor the aerodynamic problem, derived in terms of flow
incidence i section 2.3.3, contain terms relafod to castic deformist.on of the structure.
These baundiry condstions were linearized in section 2.3.3.2, where it was shown that the
tow incidence due to ehistic dztormation must satisty the following relations at the mean
serodynamic surtaces:

4 X - \
¥, = e (6. x ny
G :
) 4.2-89)
and
3 3 -
o hod o I e -
A ] v 1.



Xn+1

conditions have the following 1orms:

and

and

FI~URE 4.2-4. ELASTIC DEFORMATION O AERODYNAM!(C SURFACES

At the mean surtaces of tuin bodies, equations (4.2-89) are expressed in terms of the
tocal thin body coordinate systems, and at slender body surfaces equations (4.2-89) are
expressed in terms of the Reference Axis System, figure 4.2-4. The linearized boundary
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EYN '
thin bodies
1 .
ﬁleN
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-ﬁde 4
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GEY
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L ]
921
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e

———

434
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(4.2-90)
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In the F LEXSTAB system, elastic deformation of the thickness shapes of thin and
slender bodies is ignored. The elastic deformation contained in equations (4.2-90) ar
(4.2-91), therefore, is solely a consequence of deformation to the camber shapes. As a
result, the elastic deformation of slender bodies may be evaluated at the slender body
centerline in liev of the slet der body surface as shown by figure 4.2-4: thus, the elastic
deformation of slender bodies is represented as shown by figure 4.2-5.

Zy+r <

fe Y

FIGURE 4.2-5.—ELASTIC DEFORMATION OF SLENDER BODY CENTERLINE

42.6.1 Rotaiional deformation. -t he components of the olastic rotation appearing in
earations (4.2 2-90) and (4.2-91 dare > computed from the displacement field d usmg the
matrix equivalent of OE =1/29x die.,

(4.7-92)
eL‘ —1 O -— i _3_1 r:.T »
=X 1 -7 37 37 G
O Y 9 A .
el 2 570 Y T 5% dy
'\‘" - ___'é 3 ~ B
- 5Y 57 ‘ “zl.
L ] _ I

For thin structuras lmdiu which Jeform in a »latelike manner, the transverse <hear strains
YNz adyyy (reference 2-1. page 25) are assumed 1o be zero; henee

3 J,. 2 3’1.\, ' ‘ 3::.x a'::_n; ‘4':_\)3)

: = e an-d : =
a‘}‘“ t’-, ' a..\" ?. .
ad . .




Under these conditions the rotation at s point is equal to the deforination gradient in the
X-direction; thus, the surface rotation at the ath element is

a3 . a a (4.2-94)
{eE} s [Ne(“_{N’YN)]{G (t);
~wherc
{62} = o2
L
and 4
NN, MaN Ny
[N?" = _..—_._._1. s ;‘ 2 ) s o @ § - aX ll]Z :G.
3 E\XN BhN N N

For s':nder structural bodies, which detorin in a beamlike manner, the shear strains Ty 7 and
7y y *ve assumed *2 be zero so that- ' ‘

My 2%

oX 3Y -

Thus, the centerline rotation at a boint on the ath element is

82} = 3« 2 (4.2-95)
“ {eg} = [mgxy)3{eT ()} )
wiﬁere B a_*
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Yy
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4.2.6.2 Translational deformation rate.—The elastic displacement rat. . contained in
equations (4.2-90) and (4.2-91) are founa directly {1om the displacement relatiop~ < v
slender bodies the elastic displacement rates »re as tollows: i '

N (4.2-96)
say _ a,. 2a -
{a%} = [Nd(‘(M){g(—t?},
Teg
a
where , iY |
- {@%) =
2a
dz ﬁ
-, e
a a R4
N N e o o NO
. L | Y- T T
Nd(Xm)J e :
a a - a . -
NZ Ny = NZ YM =0
1 2 Doy = .
—_ __l M »
vhile tor thin bodi  they aie . : -
o (4 2:57)

a3y _ &, Cqrla s
{a™} = INg¢ -"iYN)]{é ()}

where .a & ca
{d*y = dZN
rT\a = :’\Yd K a 3 s e ~‘..'d i ' =
NG (XY, ) 172 {.‘ZNI ;_VZNZ -'-,Z‘Nn) 7, 0.

4.2.5.3 5 jace deformation at acrodvnamic . urol poiits”- The 1erodynamic
control points wore introduced in section 3.4 as the acrodynamic surface points where the
flow incidence induc d by the tlow si. zularities ave ovsluated. TI‘,chc a.¢ pouts at the surfices
of slenderbodies shown by figure 3.4-15 and at pa- on the Laeds surbaces of *hin bodies
slown by figure 3.4-13. The clastic deformation quantities for thin bod .« cobt incd in
equation. BL.2-94 and (4.2-97) are evaluated at the «-ometric controids ~faoe dyniamic
thin bod " panels and combinedd into matrices to comorm with the req: iremeats of o va-
tions 3.4 1 72), viz., the How incidence matrices for the < eady wnd unrteady o Lbined
liftins acrodynam:c problem solutions. Fven though the acrodynamic contro! puints r ot
at the geometric centroids, the matrices deseribing eistic deformation participation in th
derody namie boundary condiiions are cxpressed in terey. ~f detformation ot the gecmetric
centrands to obtain an anproved approximas on, oL the discission tolfowing eg wtion 1 3.4-172),

These matrices apg eat as follows:



™ : |
dY‘xM(j) ) élender bodies
_dz(xu(j))
N . ' (4.298)
@r=: p-—— T = -
dZN(xN(i),YN(i)) thin bodies
SY(XM(j)) Lend 4
. slender bodies
OZ(XM(j)) .
{e*} - i (4.2-99)
e}iN(xN(i)’YN(i)) thin bodies

where Xp() is the coordinate of the jth control point on the Mth slender body and XN(i).
Yp(i) are the coordinates of the ith panel centroids on the Nt thin body.

The relations which yield the quantities {d*} and {0*} asa result of nodal displace-
ments at all of the structural nodes { § }, equation (4.2-12), are obtained by combining
equations (4.7-94) through (4.2-97) expressed for all the finite elements of a structure. The
resulting expressions are denoted as follows:

{a¥} = [P&]{d} (4.2-100)

and

{e*} = [PB]{G}, (4.2-101)

Equations (4.2-90), (4.2-91), (4.2-100) and (4.2-101) allow the tlow incidence at he aero-
dynamic panel centroids to be related to the values of {d*} and {0*} at the panel centroids
and to be expressed as follows:

§]

- . ] -
“’c}z = (Pe]{é} - —1 [Pd]{é} (4.2-102)
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The rate of change of flow incidence is given by

(4.2-103)

4.2.7 Forces at the Structural Nodes due to Aerodynamic Surface Pressure

The nodal forces arising from aerody:amic surface pressure are derived by considering
the work done by the aerodynamic surface pressure in ucforming ihe aircraft structure, viz.,

W ="% ”{d}T{P}as | (4.2-104)

~where S is the total acrodynamic surface. { P} isa pressure matrix wnth components ot
pressure expanded on the Relerence Axiy Systein, viz., :

rP ()\!'.\.’Z't.)'1

e

P, (X,Y,Z,1)

b, - - o

and {d} is the displacement matrix, VIZ ’
r;X(X,Y,_z,-:)
- {4} = dY(X,Y,Z,‘:)

d, (X,Y,Z,%)

g e—

As noted above. the eftects of elastic deformation on the thickness shape of an aircraft
arc ignored. Equation (4.2-104), therefore. may be expressed in terms of airload, viz., the
liit ng pressure distribution on thin haidics,

and the awrodynamic load P on ihe ceuterline of a slender body. When these quantitics are
exmessed in terms of comporents expanded on the local thin and slender body axis systems
of sections 3.2.3 and 3.2.4. equation (4.2-104) becomes as follows:

4-39



[{}T{' v Y T
dp} (APNS + £ 5l {a }T(RlE  (@2105)

WI Lgg

- where the notation of section 3.3 has been introduced and at thin body mean surfaces

AP, (X Y.  t)
XNTON, TN, at thin body
{aP} = ) mean surfaces
APZN(XN,YN,t)
L v
and . -
d,,,. ( Y, t)
XN XN’ N, at thin body
{dT} = d. (X, Y. t) mean surfaces ’
| ZN TN, N, _
‘ whlle at slender body surfaces
_ Sl _ -
PX(XM,t)
. at slender
(P} = P, (X, t) body surfaces
YO, _
PZ(XM,t)
e -
and. = ]
dx(XM’t)
at slender
{d,.} = d, (X t)
T body surfaces
dZ(XM,t)
b — L]

The displacement relations, equztions (4.2-7). are readily used to construct the
elements of the displacement matrix {dt} as follows:

{d;}= [v%]{sa} (4.2-106)
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where at thin bodies

[—N a N2 .. . p 2
. XNl .«\!\2 XNn
(N7] =
T
a a a
N N e a_ s N
ZN ZN, _ ZN —
1 2 nJ ZN =0
and at slender bodies - A
» -Na Na . .« o N2 =
X1 xZ xn
a a [ ] L ] [ ]
31 = | My, Ny, N;n
N2 Na B
2y Z, Zy Yy = 0
L -
ZM - 0 °

Letting the aerodynamic surface of the ath structural finite element be given by S3, the
portion of the work represented by equation (4.2-105) which is done on the ath finite
element, at a thin body finite element, is

w? = %{aa}T” [N.‘}‘]T{AP}ds (4.2-107a)
ga
and, af a slender body finite element, is

a _ 1l;.ay a T,x
L 1O I e B

2
Lpg

(4.2-107b)

wheye Li'” is the centerline segment related to the ath finite element.

As previously noted, the solution to the acrodynamic problem. section 3.4, is
expressed in terms of airloads at aerodynamic panels on thin bodies and on segments of the
slender body centerlines. These panels and centerline segments, however, need not coincide
with the finite clement surface areas S2. Equations (4.2-107) must, theretors, be expressed
as follows:



"
| Lad
e
(=]
f
(-
[
e v

II [N;]T{AP}dS (4.2-108)

where Swi is the surface of the it aerodynamic panel and the sum is over the aerodynamic
panels on the at? finite element surface, S2, and

a (4.2-109)
W = 37 1 [ @ era
]
LBJ]

where Lg Jj is the length of the _]th aerodynamlc centerline segment and the sum is over the
) aercdynamic centerline segments on LBJ These expressions are greatly simplified in the

FLEXSTAB system. The airloads are either uniform or nearly uniform on each small
aerodynamic panel and centerline segment and are thus resolved into aerodynamic forces
applied at acrodynamic centroids of each panel and centerline segment, figure 4.2-6. They
are computed as follows:

[ tarras = ey,
4.2-110)
Swi
and
- - oA
I {Plag = _P§}B
Lpsi
¥ 4
=A
\*
e LBli"’
‘XY
X ..; A
\ iw Plane normal to surface
/_ and paraltel to x-axis
] ry » 4

Swi

FIGURE 4.2-6.~-AERODYNAMIC FORCES ACTING ON AERODYNAMIC PANELS AND
SLENDER BODY CENTERLINE SEGMENTS
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where at thin bodies —~ =

{F;jly

and at slender bodies

L Z2i] .
The variation in the displacement components over each aerodynamic panel and

centerline segment is ignored as smali and equations (4.2-108) are expressed at thin bodies
as .

] a : -
I T RN E SN Ll @.2-111)
.1 ’
and at slender bodies as
1,.a,T 2 roa,: T pA
we o= 3(6%) I [NG()] 14395 (4.2-112)

where [NT2(i)} and [NT2(j)] denote evaluation of the displacement functions, equations
(4.2-106), at the aerodynamic centroid of the jth thin body panel or jth slender body
centerline segment. The steps leading irom equations (4.2-108 and (4.2-109) to equations -
(4.2-111) and (4.2-112) involve approximations for the two finite element 1oethods used

in FLEXSTAB and described in sections 4.3 and 4.4.

Equation (4.2-105) is the sum of the work done by the airloads at all of the finite
eleinents on acrodynamic surfaces. Equation (4.2-105), therefore, may be expressed in
matrix form in terms of equations (4.2-1 11} and (4.2-112) as follows:

- sy F Teeh (4.2-113
Woe 38} [P 1N (£0) )
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" The matrix [P} is obtained simply by evaluating the diisplaceni-entlrela_tions' givenby
" equations (4.2-106) at the aerodynamic centroids-and arranging the matrices [N?l-(j)l to
obtain the following relation: . _ :

{dT} = [PTZ!{G} 4.2-114)

T

e slender bodies

o0 ep >

where

e Lde Lo
A4 A4 -

{d.}

it
l
I
|
{

-]

d (i) thin bodies

L+

Letting {QA} represent a set of nodal torces, the following expression represents the
work done by these nodal forces in deforming the structure:

W= 2617 1M. (“.2115)



This work is equated with that done by ihe airldads, equation (4.2-113), i.e., -
1 TensAy _ 1 T T, A
F{81°{Q7Y = {8} [P 1 {f ¢}
The nodal displacement components are independent quantities. It follows, therefore, that

the nodal forces {QA} are equivalent to the airloads { f-'l\- }if

1Py = [PT]T{f%} (4.2-116)

This expression is the desired result; it relates the airloads at the aerodynamic panels and -
centerline segments to the forces at the structural nodes in the finite element method.

4.2.8 Propulsion System Forces and Motions

Two additional transformations relate concentrated ioads and motions at the mounting.
points of the propulsion system to the nodal forces { Q} and nodal displacements {5}. In
the FLEXSTAB system, the propulsion system consists «f up to ten eugines supplying
thrust and having rotating parts. The irounting points are assumied to be at the centers of
mass of the engines. A gyroscopic couple Mi is assumed to act at eack mounting point, but
the thrust vectors T; may be distributed along a slender structural body represenfing an
engine. Translational displacements at the points of applied thrust are expressed as

(al} = [ar1Tre 146}, 4.2-117)

This expression is obtained by evaluating cquaticn (4.2-114) ai the thrust application point.
The rotational displacements at the mounting poincs are expressed as

{eG} = [AG]T{G} (4.2-118)

and this result follows by applying the operation 8 = 1/2 (V x :l.) to the displacement
components of equation (4.2-6) as in the case of equation (4.2-92). When the result is
evaluated at the engine mounting points. equation (4.2-118) is obtained. The work done at
the structural nodes is equated to the work done at the thrust application points to obtain

(6)T(Q"1 = (6} Ip 1 [NAF T}

where { T} is a column matrix of thrust ~omponeits expanded on the Reference Axis
System and

(6171Q%) = (81711005
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~ where{ MG} is 3 column matrix of BYTOSCOEicC couple components exparided on the
Reference Axis System. The nodal forces are now found as follows:

Ty - ro 1Traar
{'Q } = [P JTINAFI{T} 4.2-119)

Q%) = Iag 118y

O

A detailed description of the transformation matrix [NAF] is contained in s.tions 43. 6
and 444 and the matrix { M(’} is derived in section 6.2.1.

4 3 INTERNAL STRUCTURAL- INFLUENCE COBFFICIENTS

The stmctuxal matrices used in fotmulatmg the structural equatmns of motuon in
section 4.2 are derived in this section:assuming that an aircraft structure may be represented .
as a collection of beams. The components of an aircraft configuration are classed as thin-
bodies and slender bodies using the classification introduced in section-3 and the structural
behavior of each body is approximated assuming it to behave as a beam. Each body has an
elastic axis, figure 4.3-1, which is assumed to deform by bending .nd twisting. The
derivation of the structural matrices is based on the finite element method introduced in
section 4.2. The elastic axes of the bodies are divided into finite elements, and the
derivation follows the approach of section 4.2 leading to the flexibility matrix, the mass
" matrix, the free vibration mode shape matrices, and the transformation matrices required to
formulate the structural equations of motion.

Thin body elastic axes

Slender by elastic axis

FIGURE 4.3-1.—ELASTIC AXES OF A TYP' AL CONFIGURATION



The derivation of the structural matrices is based on the usua! beam theory approxi-
. mation, which assumes that plane sections of the structure initially perpendicular to the
elastic axis remain plane and perpendicular to the elastic axis after structural deformation,
reference 2-1, pp. 106-109. The consequence of this approximation on the deformation of
the structure is illustrated by letting T be the position (relative to the elastic axis) of point
P in a plane section, figure 4.3-2. Consider the point O on the elastic axis where the plane
section and the elastlc axis intersect. If the point O undergoes the small rotation 00 and
the small translation do, then the pomt P rotates tnrough the angle 0 and translates
through the distance d= do + 00 X T. Under this approximation the deformed shape of a
structure is seen to be completely determined by the deformation of its.elastic axis.

, - 'Plane section

\4___.——- Pomt on the structure

\1

Efastic axis _

' FIGURE 4.3-2.—TYPICAL PLANE SECTION OF A STRUCTURAL BODY

*: Beam theory yields a valid approximation to the true structural behavior if the
structure has appropriate geometry. For beam theory to be valid the dimensions of the
structure in the directions in which its elastic axis is assumed to bend must be small by
comparison with the length of the elastic axis of the structure. In the FLEXSTAB system
the elastic axis of a slender body may undergo beam bending in any direction; therefore,
slender boc'ies are assumed to have small slenderness ratios. Thin bodies are assumed to bend
out of plane but are assumed to be rigid for in-piane bending. Thin bodies, therefore, must
be thin and must have aspect ratios which are an order of magnitude greater thur their
thickness ratios. Experience has shown that the beam theory approximation is sufticiently
accurate for aeroelastic predictions if slender bodies have slenderness ratios less than 0.15
and if thin bodies have average thickness ratios less than 0.10 and aspect ratios greater than
_six and less than twenty (i.e.. o < AR <20 assuming AR is based on span).

The derivation of the required structural matnces begins in section 4.3.1 with a descrip-
tion of the elastic axi» followed by a description of the beam finite elements. The derivation
then Ieads to stiffnrss matrices for the individual ﬁnite elements equation (4 2-9). These

composite stifftiess matrix for the structure of an entire am,mtt. equation (4.2 14). Section

4.3.1 ends with a reduction of the composite stif‘nes, matrix eliminating nodal force and
displacement components which are not relevant to the development following section 4.3.1.
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Most of section 4.3.2 is aimed at deriving the beam the cry forms of the transfor-
~ mations introduced in sections 4.2.6 and 4.2.7, viz., )

P

{a®} = [p,1{6} &0
(6%} = [Py1{6} @2lop
and |
Ay _ rn ATreAy - 4.2-116
{Q"} = [pp1 (£} )

These transformations, termed the aerodynamic panel transformaticns, are derived from '
formulas developed in sections 4.2.6 and 4.2.7 using the displacement relations for the beam
theory finite elements, viz., L )

. 4.2-5
{a®} = v%1{s%) @)

where the displacement functions contained in [N3] describe the beam theory deformation
shown by figure 4.3-2.

The propulsion system forces are related to the nodal forces of the bzam finite element
method in section 4.3.3. This section, therefore, contains a derivation of the transforma-
tions developed for a general finite element method in section 4.2.8, viz.,

[NAF1{T}

and 4.2-119)

G
[AG]{M }

The nodal mass matrix [mgl is derived in section 4.3.7. This derivaticn is based on
equation (4.2-18), viz.,

aa _ a-T a
[m5] = j INT] [pA][N lav, (4.2-18)
a
v

again, using the beam theory displacement relations. When the beam theory displacement
relations are introdoced into equation (4.2-18), the distributed mass interior to the finite
elements is equivalent {o a system of lumped masses. Formulas for the equivalent lumped
ruasses are derived insection 4.3.7 along with formulas tor computing the ciements of the
nodal mass matrix from the sy © m of equivalent lumped masses.
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4.3.1 Description of the Elastic Axis and Beam Finite Elerients

As noted in the preceding ap aircraft configuration is idegxlized as an assecmblage of thin
and slender bodies and in his section each thin and slendei body has the structura!
characteristics of a beam. Each tain and slender boiy, therefore. has an elastic axis; and, as
shown by figure 4.3-3. the elas’ic axes of these configuration components aie joined at
points termed “‘junction.points.” The elastic axis of a slender body coincides with its
aerodynamic mean centerline, figures 3.2-2 and 3.2-5, while the « .astic axis of a thin body
lies in its aerodynamic mean surface, figures 3.2-2 and 3.2-4. The classification of configu-
ration components as thin and slender structura: bodies follows the aerodynamic classifica-
tion of section 3 but acrodynamic thin and slender bodies may be subdivided by anv
number of junction points along their elastic axes.

+.3.1.1 Thin body elastic u. is.— As noted, the elastic axis of a thin body is assumed to
1L in the aerodynamic mean surface. It is approximated by a sequence of straight '™me
scgments in figure 4.3-4. The points of coraection are termed *‘segment nodes™ and the
elastic axis extends from the “reference junctior point node™ ot one end to the “‘outboaru
juhction point node,” as shown by figure 4.3-4. The length of the ith segment of elastic axis
on the N thin body is denoted as L(Ni}: and additional nodes, termed “interior nodes ™
may be evenly spaced between segment nodes with the spacing

ALNE) 2 piyy %iNii 431)

Thin bodies Slender body

Junction : .uints

FIGURE 4.3-3~GENERAL ARRANGEMENT OF ELASTIC AXIS
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Reference junction
peint node -

—Elastic axis segment
YN

Basic finite
elements

Interior
nodes

Elastic axis

segment nodes Outboard junction

point node

FIGURE 4.3-4.—-THIN BODY ELASTIC AXIS NODES

where a(Ni) is the number of interior nodes on the ith segrment. Thin bodies are seen to have
jour types of nodes: reference junction point nodes, outhoard junction point nodes. elastic
axis secment nodes. and interior nodes. The segment nodes are points on the elastic axis
where it chanees direction and where its stiffness changes. In all other respects the segment
nodes are treated in the same way as interior nodes, and the portion of the elastic axis
between any two adjacent nodes is called a finite element. The nodes between the reference
and cutboard junction point nodes are numbered in sequence increasing from one at the
node adjacent to the reference junction point node to p at the node adjacent to the
outboard junction point node. This numbering scheme is used to systemize the operations
of equations (4.2-10) and (4.2-11) to form a composite stiffaess matrix for each portion of
a thin body between adjacent reference and outboard junction point nodes.

The stiffness characteristics of a thin body clastic axis finite clement (i.e., tie clements
of the element stiftness matrix. equation (4.2-9)) are expressed in local elastic axis coordin-
ate systems (Xni YN ZNj b figure 4.3-5. Thg‘ xN; and ynj anes lic in the acrodynaniic mean
surface with the yn; axis aligned with the ith elastic axis segment: hencee. the local clastic
axis system is oriented relative to the local thin body axis system, sections 3.2.2 and 3.2.3.
by an orthogonal coordinate trunsformation producing a rotation about the Zx;; axis
through the cuastic axis sweep angle, figure 4.3-5, as follows:



- v - . 4.3-2)
xN- = xii("'eri + YNSJ.nI'Ni

=
|ete
1

= -XNS inl + Y, .cosT

Ni N Ni

N
=
n

1 ZN

N Thin body

. xNi

—/—

Elastic axis YNi

v

Ni'o
X

ith segment

FIGURE 4.35.—ELASTIC AXIS OF THE NTH THIN BODY

The reference and outboard junction poinu nodes are points where the structural thin
bodies may be joined to other components of a configuration. At junction points where the
elastic axis of a structural thi~ body is joined to the elastic axis of a structural slender body
or another structural thin body having a different dihedral angle, the structure is assumed to
contain a very stiff member aligned with the X-axis of the Reterence Axis System (e.g.. a
closeout rib, a nacelle support rib, or a keel beam), figure 4.3-6. The assumed large stiftness
of this fore and aft member fends to cause one of the directions of principal stress. section 17
of reference 2-i, at the elastic axis to be aligned with the stilf structural member. The ~lastic
axis always lies in the direction of one of the two mutually perpendicular principal stress
directions; hence. the clastic axis must turm at a junction point of this type to become nearly
perpendicular to the X-direction as shown by figures 4.3-5 and 4.3-6.
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FIGURE 4.3-6.—THIN BODY ELASTIC AXIS AT A JUNCTION POINT

In the £LEXSTAB svsteat. the stuf fore and aft members at junction points are assumed to
be perfectly rigid. The segment of the elastic axis forming the terminus ot a structural thin
body at a junction peint. therefore, must be perpendicular to the X-direction. It this restric-
tion were 0t imposed. the stiffness matrix representing the structure would be singular.

At a juacuen point node located between the inboard tie.. reference) and outboard
jun -tion points of a structural thin body. where there is no change in the dihedral angle. the
elastic axis sweep angle need not be zero. These junction point nodes are given the special
designation ““copianar thin body junction point nodes.” section 4.3.1.13.

431 2 Nlender hody elastic axis.  The elastic axis of a slender body is assumed to
coincide with the acrodvnamic mean centerline. tigure 3.2-2: theretore. it oo straight line.
Nedes on the cfastic axis are arranged and designatad in the same manner as for thin bodices,
fizure 4.3-7. One cud trrminates at 2 reference junction point node. the other at an
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FiGURE 4.3-7.-SLENDER RODY ELASTIC AXIS NODES

outboar: junction point node. Segment nodes are used but. as noted in the following. they
are used only to separate segments of the elastic axis having different stiffnesses and do not
* introduce a change in the direction of the elastic axis as in section 4.3.1.3. The elastic axis
segment {engths are denoted as L(Mj) and have interior nodes spaced evenly between

segment nodes with the spacing
(1.33)

LO4)
AL(M,) S0+ 1]

where a(Mj) is the number of interior nodes on the jth segment of the Mth slender buc:-.
Again, as in the case of a thin body. there arc four types of nodes on each slender body
elastic axis: reference junction point nodes. outboard junction point nodes, elastic axis
segment nodes. and interior nedes. Also. the portion of elastic axis between any two
adjacent nodes is termed a finite element. Nummbering of the nodes is identical to that for
thin bodies. section 4.3.1.1. This numbering scheme is used to systemize the operations of
equations (4.2-10) and (4.2-11) to assemble a composite stiffness matrix for each portion of
a slender body between adjacent reference and outboard junction points.

4.3.1.3  Assembly of thin and slender structural bodies 1o form a configuration. — As
zlready noted. the thin and slender bodies are structural components ol a configuration
assembled by joining the elastic axis of the thin and slender bodies at their reference and
outboard junction points. The junction points for the thin and slender structural compo-
nents on the right hand side of a configuration are numbered as shown by figure 4.3-8. The
operations, equations ¢4.2-10) and (4.2-11), which assemble the composite stiffness matrix
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FIGURE 4.3-8.—STRUCTURAL 60D Y AND JUNCTION POINT DESIGNATION

for the configuration from the composite stifiness matrices of the thin and slender body
components. are systemized by assigning the appropriate structural node numoers to the
reference and outboard junction points of the components. tigures 4.3-4 and 4.3-7. In the
example shown by figure -1.3-8. the slender body is separated into three portior "y
junction points with the portions denoted A. B, and C while each thin body has only a
single reference and outboa-d junciion point. The configuration therefore requires for its
representation three slend:=r body composite stiftness matrices and two thin body composite
stiffness matrices.

The junction point number assignment is siiown by figure 4.3-9. The reference junction
poiat of thin body No. 1 is assigned the stractural junction point node numbe, @ while its
outboard junction point is designated a free end and assigned a node number in the
numbering sequence for segment and interior nodes. The portion of the slender body
denoted as portion B is assigned the structural junction point node number @ atits
reference junction point and the structural junction point node number @ at its outboard
junction point. One reference junction point--that of a slender body on the plane off
symmetry —is desienated the reference junction point of the configuration and is shown as
structural junction point node number

4.5 1.4 Elastic axis elemerit stiffnesses, - The stiffness of the elastic axis is specified in
terms of the tollowing relations:

1 M
R ™ ET
(4.3-4)
and
¢ = —
AW
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FIGURE 4.3-9.—THIN AND SLENDER STRUCTURAL BODY
JUNCTION POINT NUMBERING

where M is a hending moment, R is the radius of curvature of an initially straight elastic axis,
El is the flexural rigidity, T is a torsional couple, 0 is the angle of twist per unit of length, and
GJ is the torsional rigidity. The first of these formulas expresses the Bernoulli-Euler law,
reference 2-1. p. 106. and the second expresses the law derived by Navier for torsion of a
cylindrical shaft, reference 2-1, equation 34.11. The factor J in the torsional rigidity may be
“erived from equation 35.10 of reference 2-1, or. ror thin-walled structures, from a simpli-
fication of that formula given by reference 2-1, section 47.

4.3.1.5 Elastic axis element stiffness matrices.— An element of the elastic axis is the
section between two adjacent nodes. The nodes are numbered sequentially; thus, there is an
element of ¢lastic axis from node a to node (a + 1). The stiffness relation, equation (4.2-9),
for this element is expressed as tollows:

] {5} {Q }

{T } [k J1[K
a oo a otl a a (4.3-5)

{T .} (k_,,JLK 11 118, ..} {Qu41!

at+l a+l a+l atl atl

where {q} contains the nodal displacement components at node a, {Tg} vontains the total
force components from the element at node a, {Qa}contains the applied force components
1t node a. [Kgql is the linear relationship relating nodal forces at node a to nodal
displacements at node aand [Kgg+1 1 is the linear relationship relating nodal forces at node
« to nodal displacements at node (a+ ).



Consider. now. the stiffness relation for the element from node (a - 1) to node a. This
stiffness relation is expressed as 4.36)
} _ [x 1K AR I RN,

a-1 a-1 a-1 a-1 a a-

{1} (K, ;3 [x7 ] {8} {Q 1

a a

where the prime indicates that the stiffness matrix [Kg ol relates to the elastic axis element
from node (a - 1) to nod= & The prime is necessary to distinguish this partition of the
element stitfness matrix from [Kqql appearing in equation (4.3-5). The two element

stiffness relations are combined as in equation (4.2-10) as follows: 4.37
r pr— : S —

S JN0Y I S" S | S N ) s, } [te,1}
tor  f= ik, g1 [k o+ x 0k 01 s} |- [}
_{_Ta+1} | Lol [Ka-l-l cx] [!‘a+1 a+1_]_ {60.+1} _{Qa+15

Equation (4.3-7) illustiates the operations involved in forming the composite stiffness
relation from the element stiffness relations. The tofal forces at nodes. i.e.. { Tg }. are
required to vanish for equilibrium at the nodes, and the nodal displacements, {bax }, of
elements joining a structural node are required to be identical for continuity of the elastic '
axis at the nodes. ‘ Qq ] appearing in equation (4.3-7) is the sum of {ch’ from equations
(4.3-5) and (4.3-6). When the operations leading to equation (4.3-7) are carried out for all
structural nodes. the composite stiffness relation is generated.

In section 4.2 the composite stiffness relation for a complete structure, equation

~ (4.2-14)_ infers that the structure is unconstrained. The beam theory of this section does not
lead to completely unconstrained composite stiffness relation because the slender body
joined to the reterence junction point of the structure is assumed to be infinitely stiff for
axial extension. The composite stiffness relation for the structure is expressed as

{Q} = [KI{&} 4.3-8)
tut the components of displacement and force at the fcfercncc junction point node are
given by —

g - ) -
d,l 'R Fyr
97R fZR

[&%) = e, ® = M
(631 = XR and {QR} z ¥R
¢ M
\{R - -YR
e M
| “ZR | | 7R |




The components of force and displacement Fxp and dx R at the reference junction point
do not appear in the composite stiffness relation.

4.3.1.6 Composite stiffness. matrix. - The composite stiffness matrix is obtained, as
noted above. by assembling the element stiffness relations for all elements of a configura-
tion’s elastic axis. In the FLEXSTAB system, the structural nodes are numbered in the
specific order introduced in sections 4.3.1.1, 4.3.1.2, and 4.3.1.3. thereby leading to a
specific arrangement of the composite stiffness matrix. Nodes at junction points are
considered first taking in order the reference junction point of the configuration. the general
junction points (i.e., those junction points having no special characteristics), and then the
éoplanar thin body junction points. Nodes on slender bodies occur next, followed by nodes
on thin bodies. The matrix is partitioned in terms of this nodal designation arrangement as
follows:

= 4.39)
[Ki= | I | : -
s
Reference | | |
Junction .

Point | [el | (ol Coupling | tol
l Genergl | -] -1
[o] | Junction| {ol ICoupling I Coupling
Points
———————— i NS P
Coplanar
I | Thin body I |
fal fo] | Junction [oi | Coupling
I Points I
- T T |I————- ----- —I—Sféﬁdéf—'—l -7
Coupling l Couplingl fo] I Bodies | Lol
I I —l Th in
(o] l Coupling| Coupling | fol | Bodies

where the coupling partitions contain the stiffness coefficie its which relate nodal forces at
the junction points to nodal displacements at nodes on the thin and slender bodies and vice
versa. Each of the partitions of equation (4.3-9) are derived in the following as separate
composite stiffness matrices for the thin bodies, slender bodies, and junction points.
Assembly of the composite stiffness matrix for the complete structure is carried out by
assigning structural junction point numbers to cach of the reterence and outboard junction
points of the thin and slender bodies as described in section 4.3.1.3.

$.2.1.7 Thin body finite element stiffnesy matrices. - Consider the partition of the
composite stiffness matrix, equation (4.3-9), related (o thin bodies.



~ Asnoted previously, the elastnc axis ot ‘a thin body lies in its mean aerodynamic surface
and consists of straight line segments, figure 4.3-4. The stiffness properties of the elastic axis
elements are exprased in terms of local elastic axis coordinate systems ("Ny YNj ZN,),
figure 4.2-5, which are obtained by transformation of coordinates from the local thin body
coordinate system, equation (4 3-2). The axis is aligned with the elastic axis segments by a

. rotation of the coordinates through the elastic axis angle of sweep I Nj-

: The segments of elastic ‘axis on thin bodies have finite torsional stiffness and finite
- out-of-plane bending stiffness, i.e., for bending out of the plane of the thin body. Thin
bodies, however, are assumed to be infinitely stifT for in-plane tending and extension in

their planes. The components of elastic nodal displacement at node on the ith elastic
_axis segment of the Nth thin body, therefore, are gven as follows (figure 4.3-10):

{cu(i)} =19

where dan isa translatlon normal to the ihin body’s mean surface and 6

1 a

(4.3-10)

xNi and @ yNi

denote elastic rotations about the xp; and yy; axes. The components of nodal fon.e at the

same node are given by

F‘P -

M
M

zN1

xNi

yNi

@.°11)

FIGURE 4.3-10.—NODAL FORCES AND DISPLACEMENTS AT
A NODE ON THENTH 1HIN BODY
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where FzNi is a force normal to the thin body mean surface. MyNi is a torsional couple.

and M, y; is 2 bending moment, figure 4.3-10.

The stiffness matrix tor the elastic axis element between nodes a and a + | on the ith
segment of the Nt thin body is found from equation (4.3-4) as follows:

4.3-12)
B ]
12%1
(ALY?
SYM.
- 6EI 4LET
(AL)? AL
. ] 2 g &J
[Kua] [xu atl ) AL
) “12ET  6EI | 12v1
[Ka+l a][Ka+l a+1] - GD? Ttz © i any?
|
6EI 2ET |, | _8EI urT
(AL)? AL , (AL)2 AL
5o N
SJ 0 .
. 0 0 AL | 0 AL
e ' pa—

where El = EI (Ni) is the bending stiffness of the segment. GJ = GJ (Ni) is the torsional
stiffness of the segment. and

AL = LQI1)/[a(Ni)+1]

is the length of the elastic axis element.

4.3.1.8 Thin body composite stiffuess magrix. - Thin body composite stiffness
matrices are formed from the element stitfness matrices tollowing the operations described
in section 4.3.1.6. but at nodes where the elements of the elastic axis are not colinear. join-
ing clements are expressed in different coordinate systems. Before the two clements may
be assembled at this node by the operation of equation (4.3-7). the nodal forces and
displacements at the segment node must be transtormed to a.common coordinate system.
The adjoining segments are denoted as (1 - Dy and i figure 4.3-11, and the nodai forces and
dJisplacements on the ith segment. i.c.. the segment farthest from the reference junction
point of the thin body. are transformed 2o the coordinate system of the ti - | th segment as
follows: {6,(i-1)} = [X(i-1,1)1{8 (1)}

ng(i—l)} = [A(i-l,i)]{’qa(i)}

(+.3-13)

439
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FIGURE 4.3-11.—ADJOINING FINITE ELEMENTS ON THE ELASTIC AXIS

OF A THIN BODY

where the transformation matrix is a partition of an orthogonal transformaticn matrix of size

6 x 6 for rotation about the Zyaxis and is given by

rl 0
[A(i-1,3i)] = 0 cos(PNi-F
0 sin(fNi-r

The transformation, equation (4.3-13), is applied to

Ni

Ni-1

0

—l) - Sin(rNi—PNi-l)

the partitions of the element stiffness

matrix, equation (4.3-12), for the element from node « to node (a + 1) as follows: "

[A(i—l,i)]{Ta(i)}

]

[3(i-1,)10K 100 GE-1,017 T Ixa-1,030x , ]
_____________ b
v . R
(K, 41, J0M(Em1,1)] I
[2(:-1,2)1{6_ (1)) [A(i-1,1)1{Q, (1)}
{6, (1)} (Q
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where [A({i-1, )] Tisa partition of the transposed orthogonal transformation matrix. It
follows thcrefore tj_mt

{T (i- 1)} - (4.3-14)
{Ta+l(1)} =
[AGi-1,D)30K  I0ACG-1;0 100 G2, 030k, TP s, (-1
TR R R PR i s
. {Qa(i-z)}-
7'u{Qa+I(i)}~

Equation (4.3-14) defines a new element stiffness matrix in which the nodal forces and
displacements at node a are expressed in the local coordinate system of the (i - l)th elastic
axis scgment. This stiffness matrix can now be combined with the stiffness matrix for the
element from node (@ - 1) to no.le a. The resulting composite stiffness matrix for the two
element is as follows:

{1, _, (i-1)} (4.3-15)
{0} =
[fTa+1(i)} |
(T L l Lol _
(x, 11 I[K;a] [ACi-1, 1)1k I (- 1,117 P IGE-1,00 0]
EEE oot nr T T TR |
| J{aa_l(i-l);q r{Qa_](i-l);T
x | {8, (i-1)} - [ {r -1}
{8, (1)} L}qa+1<i)}

The operations leading to the composite stiffness matrix given by equation (4.3-15) are
repeated for alt of the nodes on the NtH thin body. Assuming the reference junction point
of the body is the Q' junction point while the outboard junction point is the pth jimction
point. the composite stitiness matrix for the N thin body is expressed as follows:
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ETQ} [Kqq1[Kqy1001 '{sQ}‘ [ty
{o} |= [KNQ][KNN][KNP_J (o] -] (.} (4.3-16)

{1p} 0] (K, iLKpp] L{.61,} _{QP}_J
where [KQQ] and ﬁ!(ppl arc the stiffnesses for nodal forpes and displacements at the
‘junction points: [KNN] is the composite stiffness matrix for all nodes on the Nth thin body
(exclusive of junction noint nodes); and [KQNI, {KNQ!. [KpN], and [KNp] represent
coupling of nodal fo:ces and displacements at the junction points with the nodal forces
_‘ {QN} and nodal displacements {5y} at nodes on the thin body. :

“The 'édmposite stiffness matrix [KyN| rebments the structure of the Nth thin body as

if it w.re clamped at its junction points, figure 4.3-12. Matrices of this form are generated
for cach thin body: and, the thin body partition of equation (4.3-9) contains these matrices

~rranged on the diagonal as follows:

B ]
(K11l zZeros
thin bedy partition [Kyp1-
of Equ. (4.3-9) = .. 4.3-17)
zeros .
B [y

where the partition is expressed for N thin budies.

Clamped reterence
junction point

axis

/\— N thin bodv
Clamped outboard / 7777/

junction point {or

free end) —/

FIGURE 4.3-12.—-THIN BODY CLAMPED AT ITS JUNCTION POINTS
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4.3.1.9 Slender body finite element stiffuness matrices.—The partition of the
composite stiffness matrix, equation (4.3-9), forslender bodics is derived as follows: ‘The
elastic axes of slender bodies are made up,ofglastic axis segments which lie along the
centerlines of the sicnder bodies, figute 4.3-7. The stiffness characteristics of all elastic axis
elements are theref- (e dcscri,b%i’fn the Reference Axis System.

The elastic axis segments of slender bodies have finite torsional stiffness and finite
bendiug stiftaess tor bending in any direction. Slender bodies. however. are assumed to be
infinitcly rigid for extension of the centerline. The con'ponents of nodal displacements at
the ath, typical, node on the body. figure 4.3-13, are a< tallows:

|"dY'1 (< 5-18)

dg

- £
{6,} =

~
M
L Mx —
f %
Quthoard junction

point Elastic axis

FIGURE 4.3-13. -NOL.Al FORCES AND D/SPLACEMENTS AT
NODES ON SLENDER BODIES
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while the components of nodal foice at the ath node are given by
r -—
Fy

Fy

{q,} = M

M

M

N X

¢ ]

s -

(4.3-19)

Tli. stiffness matrix for the elastic axis element between nodes aand (et 1) on the jth

segment of the Mth slender body is given by the following:
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where for tae M;jt! elastic axis element Ely = Ely{Mj) is the bending stiffness about the Y-axis,
Elz = El ;(Mj) is the bending stiffness about the 7-axns GJ = GJ(Mj) is the torsional stiffness, and

L(Mj)
S ST 43-3)

AL

is the length of the elastic axis clement.

4.3.1.10 Slender body composite stiffness matrix.—Since all elements of elastic axis lie
on the mean centerline of the slender body and are colinear, the composite stiffness matrix
.or two adjacent elements is found by a direct application of the operations lezding to equation
(4.2-7). Repetition of the operations for all elements of the Mth slender body, with the
reference junction p. int nuinbered R and the outboard junction point ;iumbered S, leads to
the following compeosite stiffness relationship:

e o1l [is 7l Y

(Tpd|  |TKge] [Kgd  [01] [{sg} {Qg} |
fo} | = |[Kgl [_Km{] [Kygd| ({6} - :{QM} 4.3-21)
_{TS}_ -[0] [Kqp] [Kssh _;{65} EQS}_

where [Kp ] and {[Kgg] are the stiffnesses for nodal forces and displacements at the
junction points; [Kpafl is the composite stiffness matrix for all nodes on the Mth glender
body (exclusive of the junction point nodes): and [KRagl. iIKMR!. [Kgatl. and {Kpgg) are
coupling of noda forces and displacements at the junction points with the nodal forces
{Qpm} and displacements {8)q } at nodes on the slender body.

The composite stiffness matrix [Kpy | represents the structure of the Mtb slender
body as if it were clampeci' at its junction points, figure 4.3-14. Matrices of this form are
generated, and the slender body partition of composite stiffness matrix for the complete
structure, equation (4.3-9), contains these matrices arranged on the diagonal as follows:

(4.3-22)
(K, ] ]
Slender Eody - Zeros
Partition of = [K22]
Eqn. (4.3-9) .
Zeros [KMM]

when the partition is expressed tor M slender bodies.
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FIGURE 4.3-14.—SLENDER BODY CLAMPED AT ITS JUNCTION POINTS

4.3.1.11 Junciion point stiffness matrices.— The elemeuiis of the composite stilfness
matrix. equation (4.3-9). related to the junction points of the structure are developed in this
section. From the partitions identitied in equation {4.3-9) it will be recalled that the
junction points are separated into three types: the reference junction point of the structure,
genceral junction points. and coplanar tiin body junction points. In deriving the junction
point stiffness marrices a further separation ‘s introduced. General junction points joining
only thin bodies ..ust be treated separately from those which join at least one slender body.

Consider a junction point where only thin bodies are joined. such as the example
shown in figure 4.3-15. Only ene of the thin body junction points is an outhoard junction
point at the Q1 structura! junction point node: that of the Nth thin body. From section
4.3.1.1 1t will be recalled that the elastic axis segments of all of the joining thin bodies lie
m the same plane parallel to the Y.Z plane of the Reference Axis System:. As a result, the
components of nodal force and displacement at

Thinbody N +2

¢ ————Thinbody N + }
Thin body N

e Q™ structural junction
point node

FIGURE 4.3-15.—JUNCTION + UINT NOUE JOINING THIN BODIES
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the ouiboard junction poirt node of the Nth thin body and at the reference junction point

_node of the other joining thin bodies are expanded on the local thin body coonlinate
systems. To make them consistent, all componen' s are transformed to the local thin body
coordinate system of the thin body, which is joined by its outboard junction point, the Nth
thin body in the cxample.»

The components of nodal forces ar.d displacement at the outhoard junctlon point of
the Nth lhm body are given as

4.3-23)
Ay |

XHN

{§,(X)}

)} = By |-
| T de
] (4.3-29)

FZN

and

{QQ(N)}

Myn
Myn
| Q

The components of nodal forces and displacements at the reference junction point of thin
body N + I are transformed to the local thin body axis system of the thin body N as
follows:

{6,000} = [y(u+1, M) IS8, (H+1)}

Q Q

(4.3-25)
and

{QQ(N)} [Y(N+1,N)]{QQ(N+1)}

where the transformation matrix is a partition of the orthogonal transformation matrix for
rotation about the X-axis and is given by

cos(8y,.-6y) O e 7

[y(nN+1,M)] = ¢ 1 0
L Q ¢ cos(By, 4 -6,.)
—
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The element stiffness relation for the elastic axis finite element on thin body N+1 which
connects the reference junction point node to node Q on the elastic axis has the following

form: 4.3-26
] + i+3 . ]
(T o ek It [x, “ 2] ECNEE 0N B KCNE Y
Q QQ Q

) N+ N+3 - . <
T.(h+1)} - - 5, (N+1 ~ (Nt
J.l(x +1)} {K Q ] [K i1 -] {Ll( )} {Ql(f‘l )}

- -
The transtonnation. equation (4.3-25). is applicd to this expression to find
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.7 W consequence of equation (4.3-23). (-1.3-28)
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Whea the IhRL thin bodies shown by figure 4.3-1 5 arc assembled at the junction poiat. the
tfollowing ~mtnu\ relation describes the stifiness at the junction point:

(2. = [, 1.} (4.3-29)
where = h
L4 ar.. AL ) o~
L—f‘.‘- = n"] + [ ( T b ] )_;[.';-\,4 }[‘T( +—’ )] +
N % N
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The stiffness matrix [KQQ| appears on the diagonal of the general junction point partition
of the composite stiffness matrix for the complete structure. i.e.. equation (4.3-9). The
following stiffness matrices are introduced in the coupling partitions of equation (4.2-6):

102 ae1,01 | Dt | vz, m00x5 )

P 75 it T m= s o ——--
(1§ gt I .
_PQ__ _ ____ N — L ___.
[Kig*l][y(u+1,N)JTl i I
_________ T
[K.g*zl[y(N+Z,N)JTI | l

3 ) . I 4.3-30)

where the node nearest the outboard point mode on the Nth thin body is designated rode P,
while the nearest nodes on thin bodies N+1 and N+2 are nodes i and j, respectively.

At general junction points where at least one slender body is joined. the nodal forces
and displacements are transformed to the Reference Axis System. The components at all
nodes on slender bodies are expressed in the Reference Axis System. section 2.2.4
hence, only nodal force and displacement components at the reference and outboard
junction point nodes of thin bodies are derived in the local thin body axis systems and
require transformation. They are transformed to the Reference Axis System as follows:

(4.3-31)

{GP} [YN] {SP(N)}

and

{Q,} = [YN]{QP(N)} (4.3-32)

a

where the transformation matrix is a partition of the orthogonal transformation matrix fer
rotation about the X-axis and is given by

- ! 9
F:sins" 5 5 .33
2
cos8,, 2 0
(v, = 9 1 G
0 ¢ cesé
0 3 sing..
[ .
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Consider the example of the Nth thin body joined at its reference junction point to the
outboard junction point ot the Mth slender body at structural junction pomt node P, figure-
4.3-16. The composite stiffness relation for the node is found as

fQp} = [Kyp6,} (4339

where | H
t-v u-‘a- _
[~er] = [K ] + [{..] Kpp]._{N] . f. 3-35)

The stiffness matrix [Kpp] appears in the general junction point paitition of equation
(4.3-9) and tire following stiffness matrices are introduced into the coupling partitions:

T N O [

Pn
R
Kl | (4.3-36)
—_——— -1 - - - - -
N T
[k pllvy 1" | |

where n is the number of the node nearest the »utboard junction peint node of the slender
body.

Elastic axis of m'h
slender body
Junction point P

Elastic axis of Nth

thin body

M(h slender
body

FIGURE 4.3-16.—JUNCTION POINT JOINING A SLENDER BODY

4.3.1.12 Reference junction point for the structure.  As noted in section 4.3.1.30 the
reference junction point tor the entire aireraft structure is the reference junction point of a
single slendes body . figure 4.3-9. The jun-tion puints of no other thin or stender bodies may
be joined to this structural junction point. Even it a configuration consists ol a wing alone.
fizure 4.3-17. a slender body on the plane of symmetry must be appended to the structure in
order that a reference junction point for the eatire structure may be included in the
tormulation.
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Elastic axis of wing alone

FIGURE .3-17.—STRUCTURAL REPRESENTATION OF A WING ALONE

.- 4.3.1.13 Coplanar thin body junction points. - The composite stiffne<s relation for the
nodal forces and displacements at a coplanar thin body junction point is of the same form
as that given by equation (4.3-15). These junction point nodes are treated nearly like an
elastic axis segment node. The sole difference is that the nodes at the ends of two thin body
clastic axes meetirg at a coplanar thin body junction point are designated the outbo:ird
junction point of «.ne thin structural body and the reference junction point of the other thin
structural body, figure 4.3-18. Recalling equation (4.3-15), designating the two joining thin
structural bodies as N and N + 1 and the coplanar thin body junction point as P results in

FTn( i-1)} (4.3-37)
{0y |.
lf'rlti)}
o 1| '
e ____I_COl__j
(k5 106550 + [AG-1,D) 30Ky I0A (-1, D) ] |n<1 -1,)10Xp, 1
e 1,017 K]
{Gn(l-l)} l-{Or(i-l)}

Iy 3
(60} £0.(1))

4-71



S‘ - Yy

Coplanyr thin body ,unction point

Thin structural body N + 1

- FIGURE 4.3-18.—COPLANAR THIN BODY JUNCTION POINT CONNECTING TWO
THIN STRUCTURAL BODIES BELONGING TO THE SAME THIN AERODYNAMIC BODY

where

1 3 0 ]

[\(i,i-1)]1 = | o cos(T.-T; ;) -=in(r,;-T; ;)
L0 s:|.n(I'i—I‘i_l )] cos(‘I‘i—I‘i_l)
and [;.] and [ are the sweep angles of the ¢lastic axis segments adjacent to the junction
point, figure 4.3-. 8.

The partitions of the composite stiffness matrix, equation (4.3-37). which enters the
coplanar thin body junction point partition and corresponding coupling partitions of

equation (4.3-9). are as follows:
(4.3-38)

[K?F] = [Kl'm] + [l(i,i—l)][!(_a:][l(i,i-l)]“ -
appears on the diagonal of the coplanar thin body junction point partition.
IRppl  represents coupling with the MU gleader body. and
[Kipl  represents coupling with the N thin body.

The remaining clements of the composite stiffness matrin of equation (4.3-37r are members
of the partitions “or thin bodies in equation (3.3-9).



4.3.1.14 Plane of structural synv »tr;.-- Al configurations which are analyzed by the
FLEXSTAB system must have a plane of geometric, structural, and inertial symmetry. The
composite stiffness relation for the structure, i.e.,

{Q} = [K1{s}, " (4.2-14)

and the composite stiffness matrix, equation (4.3-9), are expressed in terms of nodal forces
and displacements ai nodes on the plane of symmetry and on the right-hand side of the
aircraft. Two composite stiffness relations are developed as noted in section 4.2.5. One
assumes that the nodal forces and displacements are symmetric functions of the Y-coordinate.
The other assumes that the nodal tforces and displacements are antisymmetric functions of the
Y-coordinate, and the two composite stiffness relations are denoted as follows:

Q) = tx1%(8)s symmetric (4.339)

{Q}A - [K]A{ G}A anti-symmetric (4.340)

4.3.1.15 Special cunsideration for nodes on the plane of symmeltry .- -

®  The stiffnesses of elastic axes of bodies lying on the planc of symmetry are
reduced by one-half when the composite stiffness matrix is formulated.®

e In the symmetric case the components of nodal displacement dy, 0, and 07 are
set to zero for nodes on the plane of sy nmetry.

o In the antisymmetric case the components of nodal displacement d; and 8y are
set to zero for nodes on the plane of symmetry.

As a consequence of the above. nodal forces and displacements at nodes on thin bodies
lying on the plane of symmetry, e.g., a conventional vertical tail. do not appear in the
symmetric form of the composite stiffness relation, equation (4.3-39).

4.3.2 Reduction of the Composite Stiffness Matrix

4.3.2.1 Composite stiftness mairix partitiens. --Certain nodal components of force
contained in{ Q}. i.c.. the nodal forces gencrated by the con.posite stiffness matrix.
equation (4.3-8), are always sct to zero. This is the case with the nodal forees at coplanar
thin body junction points. The ohji  ‘ive here is to remove these nodal forces from the
stiffness relation. To accomplish this objective the composite stiffness relation for the -
structure is partitioned according to equation (4.3-9) as follows:

*Stiffnesses ol elastic axes on the plane of symunetry are input as full valued
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where {Qc} are the noda forces at the coplana: junction points. Letting these nodal forces
vanish. i.e..

{Q.} = I3k

Equation (4.3-41) reduces to the following

= _ o (4.3-42)
{Q} = [¥1{s'}

where
B —_
{0}
{¢%}
.1':.1
(Q]

fQ{Y,}

4.343)
{0%} =

and
F - (3345
{65}

{§%} =

Note that the superseript asterisk is not used 1o indicate a relationship with the qaantities
appearing on equations (4, 2-100) and (4.2-191



_The asterisk is used in the partitions of cquations (4.3-43) and (4.3-44) to indicate that
these quantities are generated by the composite stiffness matrix as given by equation
(4.3-42) rather than those generated by equation (4.3-8). Equation (4.3-42) represents the
stiffness matrix for the structure in terms of independent nodal displacement compons - ts
and in ierms of applied nodal force components which are non-zero. It is formu'zted for the
symmetric and antisymmetric cases describec by sections 4.2.5 and 4.3.1.14 so that forms
corresponding to equations (4.3-39) and (4.3-40) are obtained. In either case, however, the
stiffness matrix i~ square and singular.

4.3.2.2 Structural node point degrees uf freedom.—The structural node point degrees
of freedom represented by { 6*} in equation (4.3-443, i¢e_, the components of nodal
displacement contained in this matrix, are independent elastic degrees of freedom, and an
element of {6*} may be assigned any value independent of the values assigned to the other
elements. This linear independence is achieved as a result of the special chnice of coordinate
systems at the various types of structural nodes introduced in the preceding. Table 4.3-1
summanizes the coordinate systems used in expanding the nodal displacement and force
components, the independent elastic degrees of freedom, and the constrained degrees of
freedom at junction points listing this information for each type of node identified by its
location. This separation of nodal degrees of freedom at junction point nodes into
independent elastic and constrained degrees of freedom is introduced into the notation by
letting all six degrees of freedom at a junction point, ¢.2., the Pth junction point, be expressed as

d
Xo (4.345)
{sp) = .
{8}
PJ

where the elements of { 6}‘,} are the independent elastic degrees of freedom and dXpisa
constrained degree of freedom.

4.3.3 Displacement Relations for Beam Finite Elements

In this section the displacement relations. equation (4.2-7), are derived for the beam
theory used in FLEXSTAB: They are required to evaluate the nodal mass matrix, equation
(4.2-18), as well as the transformations appearing in sections 4.2.6 through 4.2.8 as
equations (4.2-100), (4.2-101). (4.2-116). (4.2-119). and (4.2-120).

The derivation of the displacement relations for the beam theory finite lements i
complicated by the assumea partial rigidities ot the thin and slender structural bodies. In
itess (o). section 4220106 was assumed that the displacement relations covid be exprossed
for cach finite element of the structure as

4.2-5)

(% = 38

475



L€'y pue

3JM10NJ)s 3L

EL-C'p $84nB)) ‘WIBISAS $IXE 80URIDJY Yp 2y ApXgZpAp ayy 40} 1r0d uonsunl 3duasagay
_ Apog
Japuals W 8yl - Apoqg Japuajs
91L-E'Y pue e 40 wiod uoipunl pieoyino
£1-C'p 584nBy) ‘WOISAS 5{X@ 83UBIE0 Y Xp ZyhgXyZpAp 843 51 YIIYM 3pOU JUId UONIUNE
Apoq uiyl (N eyl- Apoqg
O-£'ty puB p-g'p 39Inby§ uiyy 2 jo uod uoiounl pieoqino
‘Wwe)sAs sixe |800] Apoq ujy) .:c ZNm _2>u .ZXu 2>c .qu _ZN_u 8yl 51 Ysiym apou tod uooung
$.XB 3115€|3 UO 3POU
2-2°Z 4By} ‘WwaisAs s|xe 8OURIROY Xp Zg:AgXgZpAp 'sixe 2115819 APOQ JBPURIS || W
9-€'Y Pue p-g'y $0nby INZ,, INA,. INX A ANX . INZ sixe o11se|a {0 Juawbas yn
‘WeISAS JuaWBes s|xe 211389 (8207 INZg INAp ANXp NAg INXg Nz, uo apou ‘sixe duise[d Apod url || N
WigIsAs wopoessy jo seasbap wopea.y jo u0131e20| 3PON
318UJ£ 100D poulRSUO) saaubap oiisee
juspuedapu|

WN0Q334 4 40 SIIHOIA LNIOd FAON TVHNLINYLS 10 AHVIWNANNS—1-€b I78V.L

/0



where {d2} represents three components of clastic deformation, equation (4.2-6), at points
interior to the ath finite element. The finite elements of the beam theory are sectiors of the
thin and slender bodies between node points, figure +.3-19. Because of the assumed
rigidities, however, displacement relations in terms of the nodal displacements at the nodes
of the beam fi)ite clements cannot provide a complete description of the finite element
displacement. The displacement relations for the beam finite elements are expressed as

(4.3-46)

_ a %z
{ac:; = [Ne]{ae }

a
o
where elements of {8.%a } represent the independent elastic degrees of freedom, table 4.3-1,
at the nodes of the atﬁ beam finite element expressed in the local axis system of the elastic
axis, figure 4.3-5. The total displacement of the ath finite element is, however, the sum of
the displacement given by equation (4.3-46) and a constrained displacement relative to the
reference junction point of the body on which the ath clemert is located. i.e..

’ N} (4.347)

) P
{d" ., = [NLI{8,?,

The total displacement of the ath finite element on the Nth structural body is, therefore,
given by the following:

(4.348)
P i@y L a *y N
{a@a®} = [Ne]{ée } o+ [NC]{ﬁp}
Slender body beam
finite element 2
Y

Thin bady besm
finite elemert

FIGURE 4.3-19.-THIN AND SLENDER BODY BEAM FINITE ELEMENTS
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when the reference junction point of the body is at the pth junction point node oi the
structure.

4.3.3.1 Constrained displacement relations.—The constrained dispiacements denoted
by equation (4.3-47) for thin and slender structural bodies are shown by figures 4.3-20 and
4.3-21. The constrained degrees of freedom for thin structural bodies, e.g.. the Nth thin
body, are dxN, dyN, #ZN. and the points i with the cooidinates XN(1), YN() relative to
the reference junction point of the Lody undcrgo the follewing constrained displzcements:

s v s (4.3-49)
dXN(l) = dXNP YN\l)GZNP ”
dyn(i) = dyy ¥ Xy .

The only constrained degree of freedom for the sleader structural hodies, e.3., the Mth
slender tody, is dy, and all points such as the jth point of a slender body undergo the
following constrained displacement:
o (4.3-50)
d,(j) d
X XP

where the refercnce junction point of the body is assumed to be the pth iunction poist
node of the structure.

Reference junction point
of the body

Displacement ¢ -Tesponsling

to { o) \:

X
N
A

Disptaced body iying
in the XNYN piane

) Constraine.d disy iacernent
Quttoard junction

point of the body corresponding to {5

al

FIGURE 4.3-20.—CONSTRAINED DISPLACEMENT OF A THIN BODY
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Outboard junction point node

th

point on body

point node

FIGURE 4.3-21. —CONSTRAINED DISPLACEMENT OF A SLENDER BODY

The constrained displacement relations for thin and slemicer strucmrai bodies are
denved from equations (4.349) and (4.3-30), respectively. In either case, the reference
~-_ junction point node of the body ihas six degrees of freedom expanded on the Refemnce Axis

System, i.e..

- For the Nth thin structural body having dihedral angle 0 the matrix [\

o x 0y z_J

jth surlace pomt ﬁoure 4.3-20, has the following elements:

' r—l 0 Q
[MN] = 3 cos8 sin@
C . N
: (] J -0

N

0

0
0

v
i

-XN(l)Slne

N

0

(i)sin®

b
by

N

—Ybs(i)cose;

XN(i)COSHN
1]

“4.3-51)

T evaluated at the

(4.3-52)

- For the Mt glender structural body the matrix Ia\*%"l is given simply as

junction point node. A

M
[NC]

et

o o

o O

[on)

o o

(4.3-53)

‘The components of displacement contained in {8p} represent a combination of
independent elastic degrees of freedom and constrained degrees of freedom at the structural

s shown in table 4.3-1. the independent clastic and constraiaed

degrees of freedom ot the structural junction point node are those of the hody whose

outhoard junction point is at the node. Comnstrained inotion of the outhoard junction point
}C it the result of a rigid connection with the reference junction pomt of the body. The
acement of the Qth junction point ncJe may therefore be expressed as follows:

-
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5, +

L8g} = [Toqll8g} + [TQp1M8,)

where the matrix [T}y,] transforms the independent degrees of freedom at the Qth
junction point node to the Reference Axis System and introduces zeros fcr the constrained
degrees of freedom while the matric [T‘Q ] is obtained from equations (4.3-52) and (4.3-53)

-evaluated at the ooordnuta of the outboard junction point, viz.,

(8} = [Typllsp)

Assume that the structural body providing the outboard junction pomt at the Qth
structural junction point node is the (N - 1)1 thin body having dihedral angle ON.1- The
_-independent clastic degrees of freedom at the junction point node are dZN-l OxXN-1-0YN-I
(table 4.3-1 ), and the elements of [T'QQI are as follows:

[T ] {s (4.3-54)

(4.3-55)

_ - (4.3-56)
) | 0o o 7] '

-* —s:.neN -1 0 0
‘;[-TQQ] cosy . 0o o
0 - 1 1]

Q 0 cos(-)N_:L

e 0 singy |

L - )

For the same arrangement, the elements of [TQPI are “4.3-57)
-1 ' 0 ' 0 Iv (PQ)sind _1(PQ)coso ]
—_— e e e — ~N-1_"""_""N-1 N-1

2
0;' cos“6y_; ¥ cosly . -XN_]_(PQ)coseN._:L ( Q)cos N1
S ol 5 i U
. R 2

) «.osBN ; Isin GN 1 [~ %y 8in eN—l )(N__lc?oseﬂ_1

lx SineNll _l_ o _ xsineNl i
o | o | o | 0 |_
T rT - r o —TSTZGI\-I: —smev_.,— - =

X cos8,

S —
31 ¢ l _0 l—s:.neN_l Icos es‘,-l
| xcos8, ; B

where Xn.p (PQ) and YN (PQ) are the coordinates of node poini Q relative to node
point P in the local bady axis systent of the (N - DN thin structural hody.
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If the structural body providing the outboard junction point at the Qth structural
junction point node is the Mth slender body, then

~ - 4.3-58)
0 0 0 o0 O
* _—
[Tgol = 1 © 95 0 0
6o 1 0o o of
c 0 1 0 0
6 0 6 1 ©
6 ¢ 0 © 1
and
I = 4.359) -
1 0.3 0 0 0
000 0 0 G O
. 3 0 6 G 0 O
[T.,] =
QP 0 2 0 0 0 O
0 0 0 0 6 O
0 0 3 0 9

4.3.3.2 Example of combined constraint relarions. —-Consider a configuration
consisting of four structural bodies. figure 4.3-22. The reference junction point of the
configuration is junction point node R. and the reference and outboard Junction point
nodes of the bodies are denoted as follows:

—

Reference  Outboard
Body Junction Junction
Numbe¢ Point Node Point Node
1 R [
2 P S
3 S Q
4 Q T (Free End)

The nodal displacements at junction voint node Q are given by

(4.3-60)
1{e_ 1 + [T

Q Q]{ b,

{SQ} = g!

o %

'QQ
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N

.. FIGURE 4.3:22 ~EXAMPLE STRUCTUR.  CONFIGURATION.

‘ie., the l_u)dal displacements due to elastic deformation at _unction point node Q

* superimpos2d on the constrained displacements ansing from nodal displacements at ‘S..

- Similar relations are expressed for junction point nodes S and P as
' . @.3-61)

* . -3 )
(65} = [TggMfong} + [Toplfsp)
and o , : 4.362)"
x x_ )
{a-P} =—[’IPP}{8eP} + [TPR]{GR}_

These three equations are combined to describe the junction point nodal displacements at
Q. S, and P in terms of de (viz., the reference junction point of the structure) and the
elastic nodal displacements at the junction point nodes Q, S, and P as follows:

~

(6} = [Tqd{s o + [TaglTeg1M6 )

Q 0Q
% ‘ - b [ (4.3-63)
+ [TQS][TSP [Top1(6. .}
+ [Ty IlTgpllT 106 ,)
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{6} = [Tagliohe} + LTgallToRll60 ) + 4364 -
+ [Tg *][TDR]{§R}

{8} = [TPP]{G } + [Tp M85} (4365

For an arbitrary number of bodies the nodal dnsplacements at the Qth junction point node
are given as ; : (4.366)

{' S Q-1 2
]GeQ}*i ([TQP]L ]'"[T ][T ][T ]{6 })

2
{GQ}A = [TQQ

+ ([Tq ][T;_];-f[T_;][TS:][TL;]){GR}

QP

.where _t_l_le sumon L is over all junction point 11 les which link Q to the reference
"~ junction point node of the aircraft. B - :
Equation (4.3—66) is used to generate the following transformation:

_ % x - & (4.3-67)
(65} = [T ;6 ;} + [T p1{6y}

where the matrices are given by the followmg for the example structure shown by figure

T 4.3-22:
— R — x -
(g} (s}
{8} = | {6} ’ ® :
J S . - {8 o} 43-68)
. } {GGJ} = eS
8
O9p *
|~ {3 ?}
. | e
’_’rm % ' P H] l ]
“Toqd | [Tosdlfgsd | [TogdlTgpllTyy)
_—— - - = B _
S8 NEY IS5 T RN 06 T A i [ e (369
- - = _l _______ . - — — —
o1 | o1 | (T o]
| ' | - -




,_ (Tgs] Ugpl Ul | w30
2 T I L ek
[Tyl = . [TgpdlTpgl

L o -:,-;-[_TgR]'* LR e nes

smglematnx te oonformvnththe eolumnmatnx o dep'elidcnt ﬂela'sﬁcad

“at the structurat junétion point nodes, i.6.,6%, }ofeguanon (4.3-68): Fortheexample 'f”f

. ol

. B zeros = [Nc]

- e J

~ Using the notauon of equation (4.3-67), the constrained dusplacement relation for the
structure is given by the following expression: = ™
R ” "
= B, . 4.3-712)
{cl}c [Nc]([TJJ]{GJ} + [T 6. -

Equation (4.3-72) is actually a function of the local coordinate systems which may be evalu-
ated at any point on the mean aerodynamic surface of a thin body or on the centerline of a
slender body. The result is two components of constrained displacement at the thin bodies,
viz., dxN and dyy;, as well as a single component of constrained displacement at slender
bodies, 1x. The component dzp at a thin body and the components dy and dz at a slender
body ar independent elastic components of displacement.

4.3.3.4  Independent elastic displacement relations. — The displacement relations for
the independent clastic degrees of freedom, {6*2}, remain to be derived. i.e.,

{a?} = [:zzl{aza} (4.3-46)
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The derivation is carried out in the followmg, first for thin structural bodies and then for

. s!ender structural bodies. .

4.3.3.5 Thin structural bodies—displacement relations. - Thin structural bodies are
initially planar and are subjected to bending and torsion along the elastic axis. As shown by
figure 4.3-3, the elastic axis is made up of straigl:i segments and the distance between nodes
is denoted as AL(Ni). A finite element, shown by figure 4.3-23, is the portion of the body
between two plane sccuons nonnal to the elastic. The plane seutlons pass through adjacent
nodes,adand a+ 1.

The deformed shape of the finite element is described in terms of the elastic axis
coordinate system, figure 4.3-4. Let ¢ represent coondinates relative to the ath node in the
:'elastic axis system, figure 4.3-24, and, to simplify notation, let L replace AL(Nj) as the
distance from the ath node to the (a+ 1)th node.

Beam finite
element _

L

d
Ny, 1
0 vNia\‘_
ox"ilo +1 \ Elastic axis

/ \//* \\\Nr\de.cu 1)

Beam finite VNIQ . ’

element

FIGURE 4.3-24.—-THIN BODY FINITE ELEMENT n
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From the Bernoulli-Euler law, equanon (32.1) of reference 2-1, the ﬂezmre of the

. elastxc axns is gwen by the follovnng differential equation:
\

R

a* o) s o, @37
T -

" Integrating and evaluating the constarts ‘of mbtegmtjon using the nodal displacement
. components at the atP and (a+ 1)th nodes, figure 4.3-24, leads to a d&senpt.-on of the
elasncaxlsdeformatlon—the fol!owmgheam splme express:on* s go B g el

&

“_ _ n? : n ) I i n
~~-___,flm-—(1_-._3 /L. 2 /._L A)deu + (n -27 IL 11.})6,%u

(4 3-74)

Ty _pn® n’, s om? _n " .

, &) n + 2 "L )dZHOL+1 (" /L =ML e,m]uﬂ -

 “Ihis result describes the deformation of the finite elemerit arising from bending. Torsion
deforms the finite elemr ent into a helix, i.e.,

nE (g

don = ~ 8%Nje T L

vijasl ~ Oynial. @35

Combining equati./ns (4.3-74) and (4.3-75), the displacement relation for the beam finite -
_element is found as follows:

sty - * -
(4.3-76)
dyni | = (N3] |
i #
| dg | | (67}
where -
- -
Ha ZNa+1l
# . % (4.3-77)
(67} = Exnia |, (67, - Oxn3a+1
eYt‘]a 6Y2Ija+1
L. ol — .
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_and

@ .1l a_a. . 1 '
l-NZNa‘!; = lfa(aia*?nzlﬁln’), (L2n-2n2L+p?), (-g+%};)]

L2
Td § ' (4.3-78)
_ L ‘ ]
lN;Na+lj = '%3(302L+2n’3, %z(—n2L+n?), -ﬂij.

4.3.3.6 Slender structural bodies—displacement relations.—For the analysis perforr;ed
in the FLEXSTAB system. the deformed shape of a slender structural body may be entirely
in terms of its centerline—the elastic axis, figure 4.3-7. Letting: -represent position relative
- to the ath node on the elastic axis, figure 4.3-25, flexure of the elastic axis is governed by
- two differential equations aralogous to equation (4.3-73), viz.,

-d*(d.,,)
—_—e =09
S dE™
" and (4.379)
d*(d,)
—= = .
ag®

Integrating and evaluating the constants of integration using the nodal displacement
components at nodes o and @ + 1 leads to beam splinerelations identical in form with

equation (4.3-74). The displacement relation for the slender body finite element follows
dircctly as

- . -
d * T
: X {8 }u
dy = [§3) (4.3-80)
—. *
TL. dZ ) _{6 }‘1”:
where o - = -
o dY c_zYa+1
dZ dZaﬂ
' = 8%a 6ty Lz Oyasr (4.3-81)
LI ’ atl™ | 4
Yo Ya+l
6, 6. .,
- “aJ . “ats -
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Node (0 + 1)

= atfr——
¢ ) axa+1

FIGURE 4 3-25.—-SLENDER BODY BEAM FINI TE 'ELEMENT
and ' ‘ | |

[¥gi = LEs(12-3g2142£%),0,0,0,1 (L2E-26214E7)
. - .
v - = -3 -(3&;2L+2£3)7,0,0,0,%‘-2(—£2L+§3)J _

atl: © | (4.3-82)

Ny = loukhui-sg2mv2g®) 0,1, (L2E-262106%) 0
b ‘ |

I-sz = lo"%a(\?ﬁzb‘?ﬁa)ao,%z(-EZL"'Ea),QI
a+ -

1

4.3.4 Deformation of the Aerodynamic Surfaces

Aerodynamic surface deformation arising from deformation at the elastic axis nodes,
i.e., the matrix relations given by equations (4.2-95) and (4.2-96), are now derived froiu the
preceding. That representing flow incidence arising ivom a displacement rate normal to the
acrodynamic surface, ie.., equation (4.2-96). follows directly from equations (4.3-76) and
(4.3-80). Rotations of the acrodynamic surfaces are computed from the preceding
displacement relations using the operations of equation (4.2-92). :

4.3.4.1  Constrained rotations at aerodynamic surfaces. - The constrammed rotations at
thin bodies {0? are found by substituting the Zy components of [Nl‘g‘ ], equation (4.3-52).
into equation (+4.2-93). The Z)N components are all zeros: theretore, there is no constrained
rotational contribution at thin bodies.
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" The constramed m’tahons at slender bodies are found by substituting the Y and ) ;
) oomponents of [N I, equation (4.3-52), into equation (4. 2-95). As in the case of thin
. ‘bodies, these oomponents ar: all zeros, thereby lmdmg to: zero constramed rotanon at.
‘slender bodies. T 0 T L e i
’ 4 3 4 2 Indenendent ela.mc rotanons at zerodynamic surfaces. —The independent
-elastic rotations are found by substituting the dxsplacement t'uncnons gven by cquahons

(4.3-78) ind (4 3-8“) mto equahon @ 2—95)

* Fnin bodies: The thin body displacement functions, equations (4.3-8), are expressed
- in terms of the elastic axis coordinate system; therefore, the surface rotation’ n:.iitst found m‘
the elastlc axls system and then ttansformed to the local tlun body ooordmate system to

= ) -‘! : - / _1" Cl e
A | Oens o N |
o = l,
Oyn I |%n |
u - L g
~ where in a manner analogous to eqration (4.2-92)
. 3 ik
0 Ty an
L =110 R
t? Curl] =7 'a—Z—N- 0 -E .
3 3
| —5=. o - v
L on : 3 o

Because of the platelike behavior of the thin bodies, the displacement components are

related as
N : 3d.,,. 3dyy.s ad.,., L1 -,
N bAthi - N _ _ TTXNj :

and it follows that - "

A »

t_\',Nj r.ha- {¢ }a

ons = gy

J * (4.3-84)
x (6",
| “zv L]
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where

and

a =
) [Nej]-:-

0

55 = [3eur11N?]
8 ‘2 - 2
6(‘%2*%2) 3 (1-2%*’3_“2) 5 %‘,
| G (1-n/L)
0 0

0
0

) 2
_5(%2:r%3 ), .(_

2n+3n
A

0
0

——

), ’—

n/L

" Transforming to the local thin body axis system, fisi re 4.3-5, the rotation 6 EYNvis quuAnd‘ as

where

ea

[wgl = [6sinry

-a
(N3]

B

(—;z"‘

- a3 3
= [l‘«e]{&}

L3)

sinfl

N3J

—cosFN

(

h]

L-—L+3%;) 5

j(l;n/

(4.3-85)

L') )

Slender bodies: Independent elustic rotations at the centerlines of slender bodies are
found by substituting the displacement functions for siender bodies, equations (4.3-82),
into equation (4.2-95). The result of this operation is

- e
= [;Je]

4-9()

-

(6™}

(8%}

a

4+

9
<
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[N2] = %3(-51..4&2),0,0»,_}0,%.2(1‘2_“&1‘_‘_352)
e e q- . .4»
03'%3 (’;[l‘tg.z.) ,0’%2(1‘2-“61{"352 ) , 0

. [Na] - -%3(€L+£2~),0,0,0,%’—2(-2€L+3€2)
. 0,‘%3(51.*{2),0,%—2(-251,-}35),0

'4.3.4.3 Evaluation of the aerodynamic surface deformation on thin bodies.—In the -
. FLEXSTAB system, the displacement relations for thin bodies are always evaluated on .
.. beam sections which pass through a node at the elastic axis. Referring-10 equations (4.3-76€) -
" and (4.3-85), the displacement functions contained in the matrices of the displacement -~ .
" relations are evaluated with the coordinate 5 (or YNj)‘set to zero. The disp!acement o '
- relations are thus greatly simplified, but this has been achieved by introducing an -
approximation. '

“To ill strate the approximation, consider the general arrangement of the aerodynamic
paneling, ‘igure 4.3-26. The airload on each panel, being the result of a uniform pressure, is
represe:+.ed by a concentrated force at the geometric centroid of the panel. Also, as noted in
section 4.2.6.3,-aerodynamic control points are located at the geometric centroids of the
panel.

Reference junction
point

- - .
Elastic axis node
XN i ‘/\
\

Aerodynamic YN
contiol point

\Outboard junction point

FIGURE 4.3-26.—~AERODYNAMIC PANELING OF A THIN BODY
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...The coordinates of the g nel geometric centroids are used in evaluating the displacement
relations. In the FLEXSTAB system, these coordinates are approxims.. iby requiring them
to describe a poit.t on a beam section passing through a node. i

A typicél thin body aerodynamic puuel is shown by figure 4.3-27. The node which is
" nearest to the point where a line from the geometric centroid intersects the elastic axis at a
right angle is assigned to the panel. The geometric centroiu of the panel is treated as if it

- were located on the beam section through that node. This is an approximation because the
effect of the eccentricity, AyNj, shown by figure 4.3-27, is ignored. The approxxmatnon can
be avoided if the nodm are chosen to be located ot the mtersectlor. points.

Using the épproximation regarding the geometry of “he panels, the displacement
relations given bv equations (4.3-76) and (4.3-85) are simplified and lead to the translation
* and rotation of the panel being described in terms of the noa il displacement components at
-“the node assigned to the panel. The translation displacement components are given By =

{a®} = x31 (&%), (4.3-87)
a
where . - I
o o ¢
[N2] = 6 0 ¢ .
a’ " )
10 -Xy.
Nj-
i i

XNj -

ith segment of
elastic axis

Beam section through hode a

th intercept

Beam section through
node & + 1

-th

i pane! ™

Centraid \{\ AVN‘\
i e

* Beam section
through panel

: X centroid ‘
ith aerodynamic. : N
panel

VNi

FIGURE 4.3-27.—BEAM SECT/ON AT AN AERODYNAMIC PANEL CENTRQID
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‘while the rotation is given by - -

2l _ @ a, .- (4.3 88)

-where

a - -
[Ng1 = 0, sinfy;, -cosTy,)

_ 3 = L.
[N:T‘a_» xNj(ﬂSJ‘nrNj

eyNja+ ‘e

YNju

L SR
6 L .

~ - YNju

The quantity 8, o is the rate of elastic axis twist at the ath node.
4.3.4.4 FEvaluation of the aerod) vaamic surface defornation on slender bodies.-- At
slender bodies the aerodynamic pressure acting at the surfaces is resolved into point forces
?A acting at the slender body centerlines, figure 4.3-28. The aerodynamic control points for
- line doublets, figure 3.4-18. are also located at the surfaces of the slender bodies, but the
" contribution to the boundary value arising from elastic deformation is evaluated at the
_elastic axis, figure 4.3-28. ‘ ‘

-'F‘_A'- Aef(;dynamic
control point

XM ith 2erodynamic segment

FIGURE 4.3-28.—AERODYNAMIC SEGMENTS OF A SLENDER BODY
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In the FLEXSTAB system an approximation is introduced for the positions of the
aercdynamic forces and controt points relative to the elastic axis nodes. The aerodynamic
forces and control points are made to coincide with the nodes nearest their true locations.
Again. as in the case of thin bodies, the approximation simplifies the displacement relations
and allows them to be expressed in tenns of nsdal dasplacement components at a singie
node. Evaluating equations (4.3-82) at £ = 0 leads to

[~ .
a
dy
(4.3-89)
a _ 'y
dg | = (N3] (6%}
a
a
L9
-where
0 0 0 0 0 —]
[Nj1='1 a o o of"
o
I_O 1 0 0 0
while evaluaiing equation (4.3-853) st £ = 0 leads to
62 |
Ey
= ryd & X
LNGJ {¢ }a (4.3-90)
62 a )
By
L o

where

0 i C 3 1
[Ng] = [ :
a a a 0 1 g
4.3.4.3 Elastic axi. rate of peist - The rate of twist 0'\"Nj o Introduced by equation

(4.3-88). is expressed for all thin body elastic axis nodes s

° 4390

This deformation is relaied to ferces applied at the clastic axis nodes {QL.*}. cquation (4 3-43),
as follows: - - .

3
{e.r = [C271Chh (4.3-62)

where the subseript ¢ indicates that the torees {(_)II } are ex:luded
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The rate of twist at the at? node is given by

. (4.393
% YNja ‘GTLi ~ )
where GJ; is the torsioral stiffness of the ith elastic axis segment containing the node a. The
partitions of the flexiliiity matrix [C,” | corresponding to those introduced by equation
(4.3-44) appear as
* - - * *»~ : ' * >~

Ko BERN [ (i B ks R (i | 4394)
The partitions are all null except [Cw“,l and this pamtlon has the elements made up of the
following matrices

.

_ T 4.395) _
_ (el = Legp0.0l ‘
such that
* zeros
- - * x>
[Cmd = LCmngad (4.3-96)
Zeros ‘ L

4.3.5 Summary of Aerodynamic Surface Drformation Transformation:

The displacement relations of the preceding permit evaluation of the aercdynamic sur-
face deformation, viz.. {d*} of equation (4.2-100), {0*} of equation (4.2-101). and {d} of
equation (4.2-114). The transformaticns obtained from the displacement relations and used
in evaluating acrodynamic surface deformation are expressed in terms of subsets of the set
of elastic axis nodal displacement components {5 }.

4.3.5.1 Subsets of elastic axis nodal displacemci:t com, onents.—The subsets of elastic
axis nodal displacement components are as follows:

ud

——

4.3-97)

a—
o
U %
[

s [am
(o] (o]
R D 3
~—’ ——t
‘——o‘i

-
~

F fey ! [
i
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where the si'bsets are as follows:
de: "X-translation of aircraft reference junction point;

8" : .elastic noJal displacement components at aircraft reference junction point,
R
equation (4.3-18);
{5]-}: rate of twist components, equation (4.3-91)

- The subsets {6;} and {6; } are obtained from the transformations

* 95
(6} = [TR*1{6%}

]

(4.3-98)

(6%} = [Ty 1{6*}

where the matrices ['l‘;{] and [TE,] , when combined, produce the identity matrix of size
equal to {6*}, ie.,

aaqy |
[TR ]

= [1].
[Ty, 1

4.3.5.2 Partitioned deformation transformations. —The deformation of the aerodynamic
surfaces is l:elated to elastic axis nodal displacement components as follows:
e  Acrodynamic surface normal tmnslation:.
{a"} = [?,1{6} (4.2-100)
where

] ] .
[r,d = [{0}§[0]:[Lde]]

and can be written as

(a*} = 7% 106%) (4.3-99)
ae €
e  Acrodynamic surface rotation:
{6%r = (7. 13} (4.2-101)
where
i i .
SRR [ RN C N [74,1]
o] o) | vTe v -
L . |
and can be written as
(%) = DTh ).} + [ 197+ 07 3{es
i . v "‘ i - (4.3-100)
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® Aerodynamicsun  translation:

tag} = te 1) 4.2-141)
where
tepd = [rp i o1 g,
and can be written as
- % ...
{dp} = (Tgld, + [T3 ]{6 o} 4.3-101)

R

The T transformations appearing .= equations (4.3-99), (4.3-100), and (4.3-101) are derived,
- in the following, in terms of three partii~ns related to junction points, slender bodies, and
thin bodies, e.z.,

71 = :
m3 = o1 om3y! ema, ] @3107)

where [T] 5, (T] g, and [T]yy are, respectively, the junction point partii;~n, the slender body
pamtlon and the thin body partition. These partitions correspond to the foli.ving subsets
of {5}

%
(62},
{5:} = {GZ}B (4.3-103)
- ot
tae}w

4.3.5.3 Junction point partitions. --The junction point partitions-involve the transforma-
tions given by equation (4.3-67). viz_,

- ® & %
{6}J = [TJJ]{GG}T +[TJR] {‘Sk}' 4.3-67)

For the Qth junction point, {86} ~a subset of { 6;} j—the displacement relations given by
equations (4.3-52) and (4.3-53) are evaluated for points on thin bodies and slender bodies

to construct [T} in the form given by equation (4.3-73) to find the junction point partitions
of equation (4.3-101) as

[Tegd = [ 10T ]

and (4.3-104)

R 4 _ . L 4
(Tp )y = [u 3075, 3060Y
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The partition (TORI of equation (4.3-100) is replaced by a rigid b0uy mode shape matrix
expanded about the aircraft reference juncnon pomt ie.,

%1 = 4.
[¢e] = [TGR]’ (4.3-105)

and the J partitions of [Tg,], [Tye] and [Tyl are null.

4.3.5.4 Slender body partitions.—The slender body partitions follow frcm the displace-
ment rclations given by equations (4.3-80) and (4.3-86) evaluated in the manner described in
section 4.3.4.3. Thus, for the ) ] th aerodynamic centroid on the Jth gtender body and the ath
node on the Jt" slender body, the partitions are as follows:

*. Zeros
% _ . A (4.3-106)
[Tpelg = [TTJ: ]
o,
Zercs .
where
. 00000
[T,’I‘. 1= 10000
T TJja 01000
.. zeros
* _ [ 3
“Jja e,
oS .
B (4.3-107)
where -
T
1 0000
G "
QJJG 0190 K~J

[t* 1 - [t 1
Be"R |. UJja . .
) 14.3-108)

while IT,,TI B is null.

- o
—
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For the ith acrodynamic centroid on the 1th thin body and the atht node on a slender body,
the partitions are all null.

4.3.5.5 Thin body partitions.—~The thin body partitions follow trom the disp